! Copyright (C) 2005, 2009 Slava Pestov. ! See http://factorcode.org/license.txt for BSD license. USING: accessors assocs sequences kernel combinators make math math.order math.ranges system namespaces locals layouts words alien alien.accessors alien.c-types alien.data literals cpu.architecture cpu.ppc.assembler cpu.ppc.assembler.backend compiler.cfg.registers compiler.cfg.instructions compiler.cfg.comparisons compiler.codegen.fixup compiler.cfg.intrinsics compiler.cfg.stack-frame compiler.cfg.build-stack-frame compiler.units compiler.constants compiler.codegen vm ; FROM: cpu.ppc.assembler => B ; FROM: math => float ; IN: cpu.ppc ! PowerPC register assignments: ! r2-r12: integer vregs ! r15-r29 ! r30: integer scratch ! f0-f29: float vregs ! f30: float scratch ! Add some methods to the assembler that are useful to us M: label (B) [ 0 ] 2dip (B) rc-relative-ppc-3 label-fixup ; M: label BC [ 0 BC ] dip rc-relative-ppc-2 label-fixup ; enable-float-intrinsics << \ ##integer>float t frame-required? set-word-prop \ ##float>integer t frame-required? set-word-prop >> : %load-vm-addr ( reg -- ) 0 swap LOAD32 rc-absolute-ppc-2/2 rt-vm rel-fixup ; : %load-vm-field-addr ( reg symbol -- ) [ drop %load-vm-addr ] [ [ dup ] dip vm-field-offset ADDI ] 2bi ; M: ppc %vm-field-ptr ( dst field -- ) %load-vm-field-addr ; M: ppc %vm-invoke-1st-arg ( function -- ) f %alien-invoke ; M: ppc %vm-invoke-3rd-arg ( function -- ) f %alien-invoke ; M: ppc machine-registers { { int-regs $[ 2 12 [a,b] 15 29 [a,b] append ] } { float-regs $[ 0 29 [a,b] ] } } ; CONSTANT: scratch-reg 30 CONSTANT: fp-scratch-reg 30 M: ppc two-operand? f ; M: ppc %load-immediate ( reg n -- ) swap LOAD ; M: ppc %load-reference ( reg obj -- ) [ 0 swap LOAD32 ] [ rc-absolute-ppc-2/2 rel-immediate ] bi* ; M: ppc %alien-global ( register symbol dll -- ) [ 0 swap LOAD32 ] 2dip rc-absolute-ppc-2/2 rel-dlsym ; CONSTANT: ds-reg 13 CONSTANT: rs-reg 14 GENERIC: loc-reg ( loc -- reg ) M: ds-loc loc-reg drop ds-reg ; M: rs-loc loc-reg drop rs-reg ; : loc>operand ( loc -- reg n ) [ loc-reg ] [ n>> cells neg ] bi ; inline M: ppc %peek loc>operand LWZ ; M: ppc %replace loc>operand STW ; :: (%inc) ( n reg -- ) reg reg n cells ADDI ; inline M: ppc %inc-d ( n -- ) ds-reg (%inc) ; M: ppc %inc-r ( n -- ) rs-reg (%inc) ; HOOK: reserved-area-size os ( -- n ) ! The start of the stack frame contains the size of this frame ! as well as the currently executing XT : factor-area-size ( -- n ) 2 cells ; foldable : next-save ( n -- i ) cell - ; : xt-save ( n -- i ) 2 cells - ; ! Next, we have the spill area as well as the FFI parameter area. ! It is safe for them to overlap, since basic blocks with FFI calls ! will never spill -- indeed, basic blocks with FFI calls do not ! use vregs at all, and the FFI call is a stack analysis sync point. ! In the future this will change and the stack frame logic will ! need to be untangled somewhat. : param@ ( n -- x ) reserved-area-size + ; inline : param-save-size ( -- n ) 8 cells ; foldable : local@ ( n -- x ) reserved-area-size param-save-size + + ; inline : spill@ ( n -- offset ) spill-offset local@ ; ! Some FP intrinsics need a temporary scratch area in the stack ! frame, 8 bytes in size. This is in the param-save area so it ! does not overlap with spill slots. : scratch@ ( n -- offset ) factor-area-size + ; ! GC root area : gc-root@ ( n -- offset ) gc-root-offset local@ ; ! Finally we have the linkage area HOOK: lr-save os ( -- n ) M: ppc stack-frame-size ( stack-frame -- i ) (stack-frame-size) param-save-size + reserved-area-size + factor-area-size + 4 cells align ; M: ppc %call ( word -- ) 0 BL rc-relative-ppc-3 rel-word-pic ; M: ppc %jump ( word -- ) 0 6 LOAD32 8 rc-absolute-ppc-2/2 rel-here 0 B rc-relative-ppc-3 rel-word-pic-tail ; M: ppc %jump-label ( label -- ) B ; M: ppc %return ( -- ) BLR ; M:: ppc %dispatch ( src temp -- ) 0 temp LOAD32 4 cells rc-absolute-ppc-2/2 rel-here temp temp src LWZX temp MTCTR BCTR ; :: (%slot) ( obj slot tag temp -- reg offset ) temp slot obj ADD temp tag neg ; inline : (%slot-imm) ( obj slot tag -- reg offset ) [ cells ] dip - ; inline M: ppc %slot ( dst obj slot tag temp -- ) (%slot) LWZ ; M: ppc %slot-imm ( dst obj slot tag -- ) (%slot-imm) LWZ ; M: ppc %set-slot ( src obj slot tag temp -- ) (%slot) STW ; M: ppc %set-slot-imm ( src obj slot tag -- ) (%slot-imm) STW ; M:: ppc %string-nth ( dst src index temp -- ) [ "end" define-label temp src index ADD dst temp string-offset LBZ 0 dst HEX: 80 CMPI "end" get BLT temp src string-aux-offset LWZ temp temp index ADD temp temp index ADD temp temp byte-array-offset LHZ temp temp 7 SLWI dst dst temp XOR "end" resolve-label ] with-scope ; M:: ppc %set-string-nth-fast ( ch obj index temp -- ) temp obj index ADD ch temp string-offset STB ; M: ppc %add ADD ; M: ppc %add-imm ADDI ; M: ppc %sub swap SUBF ; M: ppc %sub-imm SUBI ; M: ppc %mul MULLW ; M: ppc %mul-imm MULLI ; M: ppc %and AND ; M: ppc %and-imm ANDI ; M: ppc %or OR ; M: ppc %or-imm ORI ; M: ppc %xor XOR ; M: ppc %xor-imm XORI ; M: ppc %shl SLW ; M: ppc %shl-imm swapd SLWI ; M: ppc %shr SRW ; M: ppc %shr-imm swapd SRWI ; M: ppc %sar SRAW ; M: ppc %sar-imm SRAWI ; M: ppc %not NOT ; :: overflow-template ( label dst src1 src2 insn -- ) 0 0 LI 0 MTXER dst src2 src1 insn call label BO ; inline M: ppc %fixnum-add ( label dst src1 src2 -- ) [ ADDO. ] overflow-template ; M: ppc %fixnum-sub ( label dst src1 src2 -- ) [ SUBFO. ] overflow-template ; M: ppc %fixnum-mul ( label dst src1 src2 -- ) [ MULLWO. ] overflow-template ; : bignum@ ( n -- offset ) cells bignum tag-number - ; inline M:: ppc %integer>bignum ( dst src temp -- ) [ "end" define-label dst 0 >bignum %load-reference ! Is it zero? Then just go to the end and return this zero 0 src 0 CMPI "end" get BEQ ! Allocate a bignum dst 4 cells bignum temp %allot ! Write length 2 tag-fixnum temp LI temp dst 1 bignum@ STW ! Compute sign temp src MR temp temp cell-bits 1 - SRAWI temp temp 1 ANDI ! Store sign temp dst 2 bignum@ STW ! Make negative value positive temp temp temp ADD temp temp NEG temp temp 1 ADDI temp src temp MULLW ! Store the bignum temp dst 3 bignum@ STW "end" resolve-label ] with-scope ; M:: ppc %bignum>integer ( dst src temp -- ) [ "end" define-label temp src 1 bignum@ LWZ ! if the length is 1, its just the sign and nothing else, ! so output 0 0 dst LI 0 temp 1 tag-fixnum CMPI "end" get BEQ ! load the value dst src 3 bignum@ LWZ ! load the sign temp src 2 bignum@ LWZ ! branchless arithmetic: we want to turn 0 into 1, ! and 1 into -1 temp temp temp ADD temp temp 1 SUBI temp temp NEG ! multiply value by sign dst dst temp MULLW "end" resolve-label ] with-scope ; M: ppc %add-float FADD ; M: ppc %sub-float FSUB ; M: ppc %mul-float FMUL ; M: ppc %div-float FDIV ; M:: ppc %integer>float ( dst src -- ) HEX: 4330 scratch-reg LIS scratch-reg 1 0 scratch@ STW scratch-reg src MR scratch-reg dup HEX: 8000 XORIS scratch-reg 1 4 scratch@ STW dst 1 0 scratch@ LFD scratch-reg 4503601774854144.0 %load-reference fp-scratch-reg scratch-reg float-offset LFD dst dst fp-scratch-reg FSUB ; M:: ppc %float>integer ( dst src -- ) fp-scratch-reg src FCTIWZ fp-scratch-reg 1 0 scratch@ STFD dst 1 4 scratch@ LWZ ; M: ppc %copy ( dst src rep -- ) { { int-rep [ MR ] } { double-rep [ FMR ] } } case ; M: ppc %unbox-float ( dst src -- ) float-offset LFD ; M:: ppc %box-float ( dst src temp -- ) dst 16 float temp %allot src dst float-offset STFD ; : float-function-param ( i spill-slot -- ) [ float-regs param-regs nth 1 ] [ n>> spill@ ] bi* LFD ; : float-function-return ( reg -- ) float-regs return-reg 2dup = [ 2drop ] [ FMR ] if ; M:: ppc %unary-float-function ( dst src func -- ) 0 src float-function-param func f %alien-invoke dst float-function-return ; M:: ppc %binary-float-function ( dst src1 src2 func -- ) 0 src1 float-function-param 1 src2 float-function-param func f %alien-invoke dst float-function-return ; ! Internal format is always double-precision on PowerPC M: ppc %single>double-float FMR ; M: ppc %double>single-float FMR ; M: ppc %unbox-alien ( dst src -- ) alien-offset LWZ ; M:: ppc %unbox-any-c-ptr ( dst src temp -- ) [ { "is-byte-array" "end" "start" } [ define-label ] each ! Address is computed in dst 0 dst LI ! Load object into scratch-reg scratch-reg src MR ! We come back here with displaced aliens "start" resolve-label ! Is the object f? 0 scratch-reg \ f tag-number CMPI ! If so, done "end" get BEQ ! Is the object an alien? 0 scratch-reg header-offset LWZ 0 0 alien type-number tag-fixnum CMPI "is-byte-array" get BNE ! If so, load the offset 0 scratch-reg alien-offset LWZ ! Add it to address being computed dst dst 0 ADD ! Now recurse on the underlying alien scratch-reg scratch-reg underlying-alien-offset LWZ "start" get B "is-byte-array" resolve-label ! Add byte array address to address being computed dst dst scratch-reg ADD ! Add an offset to start of byte array's data area dst dst byte-array-offset ADDI "end" resolve-label ] with-scope ; : alien@ ( n -- n' ) cells object tag-number - ; :: %allot-alien ( dst displacement base temp -- ) dst 4 cells alien temp %allot temp \ f tag-number %load-immediate ! Store underlying-alien slot base dst 1 alien@ STW ! Store expired slot temp dst 2 alien@ STW ! Store offset displacement dst 3 alien@ STW ; M:: ppc %box-alien ( dst src temp -- ) [ "f" define-label dst \ f tag-number %load-immediate 0 src 0 CMPI "f" get BEQ dst src temp temp %allot-alien "f" resolve-label ] with-scope ; M:: ppc %box-displaced-alien ( dst displacement base displacement' base' base-class -- ) [ "end" define-label "alloc" define-label "simple-case" define-label ! If displacement is zero, return the base dst base MR 0 displacement 0 CMPI "end" get BEQ ! Quickly use displacement' before its needed for real, as allot temporary displacement' :> temp dst 4 cells alien temp %allot ! If base is already a displaced alien, unpack it 0 base \ f tag-number CMPI "simple-case" get BEQ temp base header-offset LWZ 0 temp alien type-number tag-fixnum CMPI "simple-case" get BNE ! displacement += base.displacement temp base 3 alien@ LWZ displacement' displacement temp ADD ! base = base.base base' base 1 alien@ LWZ "alloc" get B "simple-case" resolve-label displacement' displacement MR base' base MR "alloc" resolve-label ! Store underlying-alien slot base' dst 1 alien@ STW ! Store offset displacement' dst 3 alien@ STW ! Store expired slot (its ok to clobber displacement') temp \ f tag-number %load-immediate temp dst 2 alien@ STW "end" resolve-label ] with-scope ; M: ppc %alien-unsigned-1 0 LBZ ; M: ppc %alien-unsigned-2 0 LHZ ; M: ppc %alien-signed-1 dupd 0 LBZ dup EXTSB ; M: ppc %alien-signed-2 0 LHA ; M: ppc %alien-cell 0 LWZ ; M: ppc %alien-float 0 LFS ; M: ppc %alien-double 0 LFD ; M: ppc %set-alien-integer-1 swap 0 STB ; M: ppc %set-alien-integer-2 swap 0 STH ; M: ppc %set-alien-cell swap 0 STW ; M: ppc %set-alien-float swap 0 STFS ; M: ppc %set-alien-double swap 0 STFD ; : load-zone-ptr ( reg -- ) "nursery" %load-vm-field-addr ; : load-allot-ptr ( nursery-ptr allot-ptr -- ) [ drop load-zone-ptr ] [ swap 4 LWZ ] 2bi ; :: inc-allot-ptr ( nursery-ptr allot-ptr n -- ) scratch-reg allot-ptr n 8 align ADDI scratch-reg nursery-ptr 4 STW ; :: store-header ( dst class -- ) class type-number tag-fixnum scratch-reg LI scratch-reg dst 0 STW ; : store-tagged ( dst tag -- ) dupd tag-number ORI ; M:: ppc %allot ( dst size class nursery-ptr -- ) nursery-ptr dst load-allot-ptr nursery-ptr dst size inc-allot-ptr dst class store-header dst class store-tagged ; : load-cards-offset ( dst -- ) [ "cards_offset" %load-vm-field-addr ] [ dup 0 LWZ ] bi ; : load-decks-offset ( dst -- ) [ "decks_offset" %load-vm-field-addr ] [ dup 0 LWZ ] bi ; M:: ppc %write-barrier ( src card# table -- ) card-mark scratch-reg LI ! Mark the card table load-cards-offset src card# card-bits SRWI table scratch-reg card# STBX ! Mark the card deck table load-decks-offset src card# deck-bits SRWI table scratch-reg card# STBX ; M:: ppc %check-nursery ( label temp1 temp2 -- ) temp2 load-zone-ptr temp1 temp2 cell LWZ temp2 temp2 3 cells LWZ ! add ALLOT_BUFFER_ZONE to here temp1 temp1 1024 ADDI ! is here >= end? temp1 0 temp2 CMP label BLE ; M:: ppc %save-gc-root ( gc-root register -- ) register 1 gc-root gc-root@ STW ; M:: ppc %load-gc-root ( gc-root register -- ) register 1 gc-root gc-root@ LWZ ; M:: ppc %call-gc ( gc-root-count -- ) 3 1 gc-root-base local@ ADDI gc-root-count 4 LI "inline_gc" f %alien-invoke ; M: ppc %prologue ( n -- ) 0 11 LOAD32 rc-absolute-ppc-2/2 rel-this 0 MFLR { [ [ 1 1 ] dip neg ADDI ] [ [ 11 1 ] dip xt-save STW ] [ 11 LI ] [ [ 11 1 ] dip next-save STW ] [ [ 0 1 ] dip lr-save + STW ] } cleave ; M: ppc %epilogue ( n -- ) #! At the end of each word that calls a subroutine, we store #! the previous link register value in r0 by popping it off #! the stack, set the link register to the contents of r0, #! and jump to the link register. [ [ 0 1 ] dip lr-save + LWZ ] [ [ 1 1 ] dip ADDI ] bi 0 MTLR ; :: (%boolean) ( dst temp branch1 branch2 -- ) "end" define-label dst \ f tag-number %load-immediate "end" get branch1 execute( label -- ) branch2 [ "end" get branch2 execute( label -- ) ] when dst \ t %load-reference "end" get resolve-label ; inline :: %boolean ( dst cc temp -- ) cc negate-cc order-cc { { cc< [ dst temp \ BLT f (%boolean) ] } { cc<= [ dst temp \ BLE f (%boolean) ] } { cc> [ dst temp \ BGT f (%boolean) ] } { cc>= [ dst temp \ BGE f (%boolean) ] } { cc= [ dst temp \ BEQ f (%boolean) ] } { cc/= [ dst temp \ BNE f (%boolean) ] } } case ; : (%compare) ( src1 src2 -- ) [ 0 ] dip CMP ; inline : (%compare-imm) ( src1 src2 -- ) [ 0 ] 2dip CMPI ; inline : (%compare-float-unordered) ( src1 src2 -- ) [ 0 ] dip FCMPU ; inline : (%compare-float-ordered) ( src1 src2 -- ) [ 0 ] dip FCMPO ; inline :: (%compare-float) ( src1 src2 cc compare -- branch1 branch2 ) cc { { cc< [ src1 src2 \ compare execute( a b -- ) \ BLT f ] } { cc<= [ src1 src2 \ compare execute( a b -- ) \ BLT \ BEQ ] } { cc> [ src1 src2 \ compare execute( a b -- ) \ BGT f ] } { cc>= [ src1 src2 \ compare execute( a b -- ) \ BGT \ BEQ ] } { cc= [ src1 src2 \ compare execute( a b -- ) \ BEQ f ] } { cc<> [ src1 src2 \ compare execute( a b -- ) \ BLT \ BGT ] } { cc<>= [ src1 src2 \ compare execute( a b -- ) \ BNO f ] } { cc/< [ src1 src2 \ compare execute( a b -- ) \ BGE f ] } { cc/<= [ src1 src2 \ compare execute( a b -- ) \ BGT \ BO ] } { cc/> [ src1 src2 \ compare execute( a b -- ) \ BLE f ] } { cc/>= [ src1 src2 \ compare execute( a b -- ) \ BLT \ BO ] } { cc/= [ src1 src2 \ compare execute( a b -- ) \ BNE f ] } { cc/<> [ src1 src2 \ compare execute( a b -- ) \ BEQ \ BO ] } { cc/<>= [ src1 src2 \ compare execute( a b -- ) \ BO f ] } } case ; inline M: ppc %compare [ (%compare) ] 2dip %boolean ; M: ppc %compare-imm [ (%compare-imm) ] 2dip %boolean ; M:: ppc %compare-float-ordered ( dst src1 src2 cc temp -- ) src1 src2 cc negate-cc \ (%compare-float-ordered) (%compare-float) :> branch2 :> branch1 dst temp branch1 branch2 (%boolean) ; M:: ppc %compare-float-unordered ( dst src1 src2 cc temp -- ) src1 src2 cc negate-cc \ (%compare-float-unordered) (%compare-float) :> branch2 :> branch1 dst temp branch1 branch2 (%boolean) ; :: %branch ( label cc -- ) cc order-cc { { cc< [ label BLT ] } { cc<= [ label BLE ] } { cc> [ label BGT ] } { cc>= [ label BGE ] } { cc= [ label BEQ ] } { cc/= [ label BNE ] } } case ; M:: ppc %compare-branch ( label src1 src2 cc -- ) src1 src2 (%compare) label cc %branch ; M:: ppc %compare-imm-branch ( label src1 src2 cc -- ) src1 src2 (%compare-imm) label cc %branch ; :: (%branch) ( label branch1 branch2 -- ) label branch1 execute( label -- ) branch2 [ label branch2 execute( label -- ) ] when ; inline M:: ppc %compare-float-ordered-branch ( label src1 src2 cc -- ) src1 src2 cc \ (%compare-float-ordered) (%compare-float) :> branch2 :> branch1 label branch1 branch2 (%branch) ; M:: ppc %compare-float-unordered-branch ( label src1 src2 cc -- ) src1 src2 cc \ (%compare-float-unordered) (%compare-float) :> branch2 :> branch1 label branch1 branch2 (%branch) ; : load-from-frame ( dst n rep -- ) { { int-rep [ [ 1 ] dip LWZ ] } { float-rep [ [ 1 ] dip LFS ] } { double-rep [ [ 1 ] dip LFD ] } { stack-params [ [ 0 1 ] dip LWZ [ 0 1 ] dip param@ STW ] } } case ; : next-param@ ( n -- x ) param@ stack-frame get total-size>> + ; : store-to-frame ( src n rep -- ) { { int-rep [ [ 1 ] dip STW ] } { float-rep [ [ 1 ] dip STFS ] } { double-rep [ [ 1 ] dip STFD ] } { stack-params [ [ [ 0 1 ] dip next-param@ LWZ 0 1 ] dip STW ] } } case ; M: ppc %spill ( src rep n -- ) swap [ spill@ ] dip store-to-frame ; M: ppc %reload ( dst rep n -- ) swap [ spill@ ] dip load-from-frame ; M: ppc %loop-entry ; M: int-regs return-reg drop 3 ; M: int-regs param-regs drop { 3 4 5 6 7 8 9 10 } ; M: float-regs return-reg drop 1 ; M:: ppc %save-param-reg ( stack reg rep -- ) reg stack local@ rep store-to-frame ; M:: ppc %load-param-reg ( stack reg rep -- ) reg stack local@ rep load-from-frame ; M: ppc %prepare-unbox ( -- ) ! First parameter is top of stack 3 ds-reg 0 LWZ ds-reg dup cell SUBI ; M: ppc %unbox ( n rep func -- ) ! Value must be in r3 ! Call the unboxer f %alien-invoke ! Store the return value on the C stack over [ [ reg-class-of return-reg ] keep %save-param-reg ] [ 2drop ] if ; M: ppc %unbox-long-long ( n func -- ) ! Value must be in r3:r4 ! Call the unboxer f %alien-invoke ! Store the return value on the C stack [ [ [ 3 1 ] dip local@ STW ] [ [ 4 1 ] dip cell + local@ STW ] bi ] when* ; M: ppc %unbox-large-struct ( n c-type -- ) ! Value must be in r3 ! Compute destination address and load struct size [ [ 4 1 ] dip local@ ADDI ] [ heap-size 5 LI ] bi* ! Call the function "to_value_struct" f %alien-invoke ; M: ppc %box ( n rep func -- ) ! If the source is a stack location, load it into freg #0. ! If the source is f, then we assume the value is already in ! freg #0. [ over [ 0 over reg-class-of param-reg swap %load-param-reg ] [ 2drop ] if ] dip f %alien-invoke ; M: ppc %box-long-long ( n func -- ) [ [ [ [ 3 1 ] dip local@ LWZ ] [ [ 4 1 ] dip cell + local@ LWZ ] bi ] when* ] dip f %alien-invoke ; : struct-return@ ( n -- n ) [ stack-frame get params>> ] unless* local@ ; M: ppc %prepare-box-struct ( -- ) #! Compute target address for value struct return 3 1 f struct-return@ ADDI 3 1 0 local@ STW ; M: ppc %box-large-struct ( n c-type -- ) ! If n = f, then we're boxing a returned struct ! Compute destination address and load struct size [ [ 3 1 ] dip struct-return@ ADDI ] [ heap-size 4 LI ] bi* ! Call the function "box_value_struct" f %alien-invoke ; M:: ppc %save-context ( temp1 temp2 callback-allowed? -- ) #! Save Factor stack pointers in case the C code calls a #! callback which does a GC, which must reliably trace #! all roots. temp1 "stack_chain" %load-vm-field-addr temp1 temp1 0 LWZ 1 temp1 0 STW callback-allowed? [ ds-reg temp1 8 STW rs-reg temp1 12 STW ] when ; M: ppc %alien-invoke ( symbol dll -- ) [ 11 ] 2dip %alien-global 11 MTLR BLRL ; M: ppc %alien-callback ( quot -- ) 3 swap %load-reference "c_to_factor" f %alien-invoke ; M: ppc %prepare-alien-indirect ( -- ) "unbox_alien" f %alien-invoke 15 3 MR ; M: ppc %alien-indirect ( -- ) 15 MTLR BLRL ; M: ppc %callback-value ( ctype -- ) ! Save top of data stack 3 ds-reg 0 LWZ 3 1 0 local@ STW ! Restore data/call/retain stacks "unnest_stacks" f %alien-invoke ! Restore top of data stack 3 1 0 local@ LWZ ! Unbox former top of data stack to return registers unbox-return ; M: ppc small-enough? ( n -- ? ) -32768 32767 between? ; M: ppc return-struct-in-registers? ( c-type -- ? ) c-type return-in-registers?>> ; M: ppc %box-small-struct ( c-type -- ) #! Box a <= 16-byte struct returned in r3:r4:r5:r6 heap-size 7 LI "box_medium_struct" f %alien-invoke ; : %unbox-struct-1 ( -- ) ! Alien must be in r3. "alien_offset" f %alien-invoke 3 3 0 LWZ ; : %unbox-struct-2 ( -- ) ! Alien must be in r3. "alien_offset" f %alien-invoke 4 3 4 LWZ 3 3 0 LWZ ; : %unbox-struct-4 ( -- ) ! Alien must be in r3. "alien_offset" f %alien-invoke 6 3 12 LWZ 5 3 8 LWZ 4 3 4 LWZ 3 3 0 LWZ ; M: ppc %unbox-small-struct ( size -- ) #! Alien must be in EAX. heap-size cell align cell /i { { 1 [ %unbox-struct-1 ] } { 2 [ %unbox-struct-2 ] } { 4 [ %unbox-struct-4 ] } } case ; enable-float-functions USE: vocabs.loader { { [ os macosx? ] [ "cpu.ppc.macosx" require ] } { [ os linux? ] [ "cpu.ppc.linux" require ] } } cond "complex-double" c-type t >>return-in-registers? drop [ [ alien-unsigned-4 c-bool> ] >>getter [ [ >c-bool ] 2dip set-alien-unsigned-4 ] >>setter 4 >>size 4 >>align "box_boolean" >>boxer "to_boolean" >>unboxer bool define-primitive-type ] with-compilation-unit