! Copyright (C) 2004, 2008 Slava Pestov. ! Copyright (C) 2008, Doug Coleman. ! See http://factorcode.org/license.txt for BSD license. USING: kernel kernel.private sequences sequences.private math math.private combinators ; IN: math.integers.private M: integer numerator ; M: integer denominator drop 1 ; M: fixnum >fixnum ; M: fixnum >bignum fixnum>bignum ; M: fixnum >integer ; M: fixnum hashcode* nip ; M: fixnum equal? over bignum? [ >bignum bignum= ] [ 2drop f ] if ; M: fixnum number= eq? ; M: fixnum < fixnum< ; M: fixnum <= fixnum<= ; M: fixnum > fixnum> ; M: fixnum >= fixnum>= ; M: fixnum + fixnum+ ; M: fixnum - fixnum- ; M: fixnum * fixnum* ; M: fixnum /i fixnum/i ; M: fixnum /f >r >float r> >float float/f ; M: fixnum mod fixnum-mod ; M: fixnum /mod fixnum/mod ; M: fixnum bitand fixnum-bitand ; M: fixnum bitor fixnum-bitor ; M: fixnum bitxor fixnum-bitxor ; M: fixnum shift >fixnum fixnum-shift ; M: fixnum bitnot fixnum-bitnot ; M: fixnum bit? neg shift 1 bitand 0 > ; : (fixnum-log2) ( accum n -- accum ) dup 1 number= [ drop ] [ >r 1+ r> 2/ (fixnum-log2) ] if ; inline recursive M: fixnum (log2) 0 swap (fixnum-log2) ; M: bignum >fixnum bignum>fixnum ; M: bignum >bignum ; M: bignum hashcode* nip >fixnum ; M: bignum equal? over bignum? [ bignum= ] [ swap dup fixnum? [ >bignum bignum= ] [ 2drop f ] if ] if ; M: bignum number= bignum= ; M: bignum < bignum< ; M: bignum <= bignum<= ; M: bignum > bignum> ; M: bignum >= bignum>= ; M: bignum + bignum+ ; M: bignum - bignum- ; M: bignum * bignum* ; M: bignum /i bignum/i ; M: bignum mod bignum-mod ; M: bignum /mod bignum/mod ; M: bignum bitand bignum-bitand ; M: bignum bitor bignum-bitor ; M: bignum bitxor bignum-bitxor ; M: bignum shift bignum-shift ; M: bignum bitnot bignum-bitnot ; M: bignum bit? bignum-bit? ; M: bignum (log2) bignum-log2 ; ! Converting ratios to floats. Based on FLOAT-RATIO from ! sbcl/src/code/float.lisp, which has the following license: ! "The software is in the public domain and is ! provided with absolutely no warranty." ! First step: pre-scaling : twos ( x -- y ) dup 1- bitxor log2 ; inline : scale-denonimator ( den -- scaled-den scale' ) dup twos neg [ shift ] keep ; inline : pre-scale ( num den -- scale shifted-num scaled-den ) 2dup [ log2 ] bi@ - tuck [ neg 54 + shift ] [ >r scale-denonimator r> + ] 2bi* -rot ; inline ! Second step: loop : shift-mantissa ( scale mantissa -- scale' mantissa' ) [ 1+ ] [ 2/ ] bi* ; inline : /f-loop ( scale mantissa den -- scale' fraction-and-guard rem ) [ 2dup /i log2 53 > ] [ >r shift-mantissa r> ] [ ] while /mod ; inline ! Third step: post-scaling : unscaled-float ( mantissa -- n ) 52 2^ 1- bitand 1022 52 shift bitor bits>double ; inline : scale-float ( scale mantissa -- float' ) >r dup 0 < [ neg 2^ recip ] [ 2^ ] if r> * ; inline : post-scale ( scale mantissa -- n ) 2/ dup log2 52 > [ shift-mantissa ] when unscaled-float scale-float ; inline ! Main word : /f-abs ( m n -- f ) over zero? [ 2drop 0.0 ] [ dup zero? [ 2drop 1.0/0.0 ] [ pre-scale /f-loop over odd? [ zero? [ 1+ ] unless ] [ drop ] if post-scale ] if ] if ; inline M: bignum /f ( m n -- f ) [ [ abs ] bi@ /f-abs ] [ [ 0 < ] bi@ xor ] 2bi [ neg ] when ;