]> gitweb.factorcode.org Git - factor.git/blobdiff - vm/fmt/format.h
math.parser: Add Dragonbox float representation algorithm
[factor.git] / vm / fmt / format.h
diff --git a/vm/fmt/format.h b/vm/fmt/format.h
deleted file mode 100644 (file)
index 7637c8a..0000000
+++ /dev/null
@@ -1,4535 +0,0 @@
-/*
-  Formatting library for C++
-
-  Copyright (c) 2012 - present, Victor Zverovich
-
-  Permission is hereby granted, free of charge, to any person obtaining
-  a copy of this software and associated documentation files (the
-  "Software"), to deal in the Software without restriction, including
-  without limitation the rights to use, copy, modify, merge, publish,
-  distribute, sublicense, and/or sell copies of the Software, and to
-  permit persons to whom the Software is furnished to do so, subject to
-  the following conditions:
-
-  The above copyright notice and this permission notice shall be
-  included in all copies or substantial portions of the Software.
-
-  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-
-  --- Optional exception to the license ---
-
-  As an exception, if, as a result of your compiling your source code, portions
-  of this Software are embedded into a machine-executable object form of such
-  source code, you may redistribute such embedded portions in such object form
-  without including the above copyright and permission notices.
- */
-
-#ifndef FMT_FORMAT_H_
-#define FMT_FORMAT_H_
-
-#include <cmath>             // std::signbit
-#include <cstdint>           // uint32_t
-#include <cstring>           // std::memcpy
-#include <initializer_list>  // std::initializer_list
-#include <limits>            // std::numeric_limits
-#include <memory>            // std::uninitialized_copy
-#include <stdexcept>         // std::runtime_error
-#include <system_error>      // std::system_error
-
-#ifdef __cpp_lib_bit_cast
-#  include <bit>  // std::bit_cast
-#endif
-
-#include "core.h"
-
-#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
-#  define FMT_INLINE_VARIABLE inline
-#else
-#  define FMT_INLINE_VARIABLE
-#endif
-
-#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
-#  define FMT_FALLTHROUGH [[fallthrough]]
-#elif defined(__clang__)
-#  define FMT_FALLTHROUGH [[clang::fallthrough]]
-#elif FMT_GCC_VERSION >= 700 && \
-    (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
-#  define FMT_FALLTHROUGH [[gnu::fallthrough]]
-#else
-#  define FMT_FALLTHROUGH
-#endif
-
-#ifndef FMT_DEPRECATED
-#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
-#    define FMT_DEPRECATED [[deprecated]]
-#  else
-#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
-#      define FMT_DEPRECATED __attribute__((deprecated))
-#    elif FMT_MSC_VERSION
-#      define FMT_DEPRECATED __declspec(deprecated)
-#    else
-#      define FMT_DEPRECATED /* deprecated */
-#    endif
-#  endif
-#endif
-
-#ifndef FMT_NO_UNIQUE_ADDRESS
-#  if FMT_CPLUSPLUS >= 202002L
-#    if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
-#      define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
-// VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
-#    elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
-#      define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
-#    endif
-#  endif
-#endif
-#ifndef FMT_NO_UNIQUE_ADDRESS
-#  define FMT_NO_UNIQUE_ADDRESS
-#endif
-
-// Visibility when compiled as a shared library/object.
-#if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
-#  define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
-#else
-#  define FMT_SO_VISIBILITY(value)
-#endif
-
-#ifdef __has_builtin
-#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
-#else
-#  define FMT_HAS_BUILTIN(x) 0
-#endif
-
-#if FMT_GCC_VERSION || FMT_CLANG_VERSION
-#  define FMT_NOINLINE __attribute__((noinline))
-#else
-#  define FMT_NOINLINE
-#endif
-
-#ifndef FMT_THROW
-#  if FMT_EXCEPTIONS
-#    if FMT_MSC_VERSION || defined(__NVCC__)
-FMT_BEGIN_NAMESPACE
-namespace detail {
-template <typename Exception> inline void do_throw(const Exception& x) {
-  // Silence unreachable code warnings in MSVC and NVCC because these
-  // are nearly impossible to fix in a generic code.
-  volatile bool b = true;
-  if (b) throw x;
-}
-}  // namespace detail
-FMT_END_NAMESPACE
-#      define FMT_THROW(x) detail::do_throw(x)
-#    else
-#      define FMT_THROW(x) throw x
-#    endif
-#  else
-#    define FMT_THROW(x) \
-      ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
-#  endif
-#endif
-
-#if FMT_EXCEPTIONS
-#  define FMT_TRY try
-#  define FMT_CATCH(x) catch (x)
-#else
-#  define FMT_TRY if (true)
-#  define FMT_CATCH(x) if (false)
-#endif
-
-#ifndef FMT_MAYBE_UNUSED
-#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
-#    define FMT_MAYBE_UNUSED [[maybe_unused]]
-#  else
-#    define FMT_MAYBE_UNUSED
-#  endif
-#endif
-
-#ifndef FMT_USE_USER_DEFINED_LITERALS
-// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
-//
-// GCC before 4.9 requires a space in `operator"" _a` which is invalid in later
-// compiler versions.
-#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 409 || \
-       FMT_MSC_VERSION >= 1900) &&                                     \
-      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
-#    define FMT_USE_USER_DEFINED_LITERALS 1
-#  else
-#    define FMT_USE_USER_DEFINED_LITERALS 0
-#  endif
-#endif
-
-// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
-// integer formatter template instantiations to just one by only using the
-// largest integer type. This results in a reduction in binary size but will
-// cause a decrease in integer formatting performance.
-#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
-#  define FMT_REDUCE_INT_INSTANTIATIONS 0
-#endif
-
-// __builtin_clz is broken in clang with Microsoft CodeGen:
-// https://github.com/fmtlib/fmt/issues/519.
-#if !FMT_MSC_VERSION
-#  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
-#    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
-#  endif
-#  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
-#    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
-#  endif
-#endif
-
-// __builtin_ctz is broken in Intel Compiler Classic on Windows:
-// https://github.com/fmtlib/fmt/issues/2510.
-#ifndef __ICL
-#  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
-      defined(__NVCOMPILER)
-#    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
-#  endif
-#  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
-      FMT_ICC_VERSION || defined(__NVCOMPILER)
-#    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
-#  endif
-#endif
-
-#if FMT_MSC_VERSION
-#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
-#endif
-
-// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
-// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
-// MSVC intrinsics if the clz and clzll builtins are not available.
-#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
-    !defined(FMT_BUILTIN_CTZLL)
-FMT_BEGIN_NAMESPACE
-namespace detail {
-// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
-#  if !defined(__clang__)
-#    pragma intrinsic(_BitScanForward)
-#    pragma intrinsic(_BitScanReverse)
-#    if defined(_WIN64)
-#      pragma intrinsic(_BitScanForward64)
-#      pragma intrinsic(_BitScanReverse64)
-#    endif
-#  endif
-
-inline auto clz(uint32_t x) -> int {
-  unsigned long r = 0;
-  _BitScanReverse(&r, x);
-  FMT_ASSERT(x != 0, "");
-  // Static analysis complains about using uninitialized data
-  // "r", but the only way that can happen is if "x" is 0,
-  // which the callers guarantee to not happen.
-  FMT_MSC_WARNING(suppress : 6102)
-  return 31 ^ static_cast<int>(r);
-}
-#  define FMT_BUILTIN_CLZ(n) detail::clz(n)
-
-inline auto clzll(uint64_t x) -> int {
-  unsigned long r = 0;
-#  ifdef _WIN64
-  _BitScanReverse64(&r, x);
-#  else
-  // Scan the high 32 bits.
-  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
-    return 63 ^ static_cast<int>(r + 32);
-  // Scan the low 32 bits.
-  _BitScanReverse(&r, static_cast<uint32_t>(x));
-#  endif
-  FMT_ASSERT(x != 0, "");
-  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
-  return 63 ^ static_cast<int>(r);
-}
-#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
-
-inline auto ctz(uint32_t x) -> int {
-  unsigned long r = 0;
-  _BitScanForward(&r, x);
-  FMT_ASSERT(x != 0, "");
-  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
-  return static_cast<int>(r);
-}
-#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)
-
-inline auto ctzll(uint64_t x) -> int {
-  unsigned long r = 0;
-  FMT_ASSERT(x != 0, "");
-  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
-#  ifdef _WIN64
-  _BitScanForward64(&r, x);
-#  else
-  // Scan the low 32 bits.
-  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
-  // Scan the high 32 bits.
-  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
-  r += 32;
-#  endif
-  return static_cast<int>(r);
-}
-#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
-}  // namespace detail
-FMT_END_NAMESPACE
-#endif
-
-FMT_BEGIN_NAMESPACE
-namespace detail {
-
-FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
-  ignore_unused(condition);
-#ifdef FMT_FUZZ
-  if (condition) throw std::runtime_error("fuzzing limit reached");
-#endif
-}
-
-template <typename CharT, CharT... C> struct string_literal {
-  static constexpr CharT value[sizeof...(C)] = {C...};
-  constexpr operator basic_string_view<CharT>() const {
-    return {value, sizeof...(C)};
-  }
-};
-
-#if FMT_CPLUSPLUS < 201703L
-template <typename CharT, CharT... C>
-constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
-#endif
-
-// Implementation of std::bit_cast for pre-C++20.
-template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
-FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
-#ifdef __cpp_lib_bit_cast
-  if (is_constant_evaluated()) return std::bit_cast<To>(from);
-#endif
-  auto to = To();
-  // The cast suppresses a bogus -Wclass-memaccess on GCC.
-  std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
-  return to;
-}
-
-inline auto is_big_endian() -> bool {
-#ifdef _WIN32
-  return false;
-#elif defined(__BIG_ENDIAN__)
-  return true;
-#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
-  return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
-#else
-  struct bytes {
-    char data[sizeof(int)];
-  };
-  return bit_cast<bytes>(1).data[0] == 0;
-#endif
-}
-
-class uint128_fallback {
- private:
-  uint64_t lo_, hi_;
-
- public:
-  constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
-  constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
-
-  constexpr auto high() const noexcept -> uint64_t { return hi_; }
-  constexpr auto low() const noexcept -> uint64_t { return lo_; }
-
-  template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
-  constexpr explicit operator T() const {
-    return static_cast<T>(lo_);
-  }
-
-  friend constexpr auto operator==(const uint128_fallback& lhs,
-                                   const uint128_fallback& rhs) -> bool {
-    return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
-  }
-  friend constexpr auto operator!=(const uint128_fallback& lhs,
-                                   const uint128_fallback& rhs) -> bool {
-    return !(lhs == rhs);
-  }
-  friend constexpr auto operator>(const uint128_fallback& lhs,
-                                  const uint128_fallback& rhs) -> bool {
-    return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
-  }
-  friend constexpr auto operator|(const uint128_fallback& lhs,
-                                  const uint128_fallback& rhs)
-      -> uint128_fallback {
-    return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
-  }
-  friend constexpr auto operator&(const uint128_fallback& lhs,
-                                  const uint128_fallback& rhs)
-      -> uint128_fallback {
-    return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
-  }
-  friend constexpr auto operator~(const uint128_fallback& n)
-      -> uint128_fallback {
-    return {~n.hi_, ~n.lo_};
-  }
-  friend auto operator+(const uint128_fallback& lhs,
-                        const uint128_fallback& rhs) -> uint128_fallback {
-    auto result = uint128_fallback(lhs);
-    result += rhs;
-    return result;
-  }
-  friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
-      -> uint128_fallback {
-    FMT_ASSERT(lhs.hi_ == 0, "");
-    uint64_t hi = (lhs.lo_ >> 32) * rhs;
-    uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
-    uint64_t new_lo = (hi << 32) + lo;
-    return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
-  }
-  friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
-      -> uint128_fallback {
-    return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
-  }
-  FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
-    if (shift == 64) return {0, hi_};
-    if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
-    return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
-  }
-  FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
-    if (shift == 64) return {lo_, 0};
-    if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
-    return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
-  }
-  FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
-    return *this = *this >> shift;
-  }
-  FMT_CONSTEXPR void operator+=(uint128_fallback n) {
-    uint64_t new_lo = lo_ + n.lo_;
-    uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
-    FMT_ASSERT(new_hi >= hi_, "");
-    lo_ = new_lo;
-    hi_ = new_hi;
-  }
-  FMT_CONSTEXPR void operator&=(uint128_fallback n) {
-    lo_ &= n.lo_;
-    hi_ &= n.hi_;
-  }
-
-  FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
-    if (is_constant_evaluated()) {
-      lo_ += n;
-      hi_ += (lo_ < n ? 1 : 0);
-      return *this;
-    }
-#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
-    unsigned long long carry;
-    lo_ = __builtin_addcll(lo_, n, 0, &carry);
-    hi_ += carry;
-#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
-    unsigned long long result;
-    auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
-    lo_ = result;
-    hi_ += carry;
-#elif defined(_MSC_VER) && defined(_M_X64)
-    auto carry = _addcarry_u64(0, lo_, n, &lo_);
-    _addcarry_u64(carry, hi_, 0, &hi_);
-#else
-    lo_ += n;
-    hi_ += (lo_ < n ? 1 : 0);
-#endif
-    return *this;
-  }
-};
-
-using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
-
-#ifdef UINTPTR_MAX
-using uintptr_t = ::uintptr_t;
-#else
-using uintptr_t = uint128_t;
-#endif
-
-// Returns the largest possible value for type T. Same as
-// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
-template <typename T> constexpr auto max_value() -> T {
-  return (std::numeric_limits<T>::max)();
-}
-template <typename T> constexpr auto num_bits() -> int {
-  return std::numeric_limits<T>::digits;
-}
-// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
-template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
-template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
-
-// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
-// and 128-bit pointers to uint128_fallback.
-template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
-inline auto bit_cast(const From& from) -> To {
-  constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
-  struct data_t {
-    unsigned value[static_cast<unsigned>(size)];
-  } data = bit_cast<data_t>(from);
-  auto result = To();
-  if (const_check(is_big_endian())) {
-    for (int i = 0; i < size; ++i)
-      result = (result << num_bits<unsigned>()) | data.value[i];
-  } else {
-    for (int i = size - 1; i >= 0; --i)
-      result = (result << num_bits<unsigned>()) | data.value[i];
-  }
-  return result;
-}
-
-template <typename UInt>
-FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
-  int lz = 0;
-  constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
-  for (; (n & msb_mask) == 0; n <<= 1) lz++;
-  return lz;
-}
-
-FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
-#ifdef FMT_BUILTIN_CLZ
-  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
-#endif
-  return countl_zero_fallback(n);
-}
-
-FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
-#ifdef FMT_BUILTIN_CLZLL
-  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
-#endif
-  return countl_zero_fallback(n);
-}
-
-FMT_INLINE void assume(bool condition) {
-  (void)condition;
-#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
-  __builtin_assume(condition);
-#elif FMT_GCC_VERSION
-  if (!condition) __builtin_unreachable();
-#endif
-}
-
-// An approximation of iterator_t for pre-C++20 systems.
-template <typename T>
-using iterator_t = decltype(std::begin(std::declval<T&>()));
-template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
-
-// A workaround for std::string not having mutable data() until C++17.
-template <typename Char>
-inline auto get_data(std::basic_string<Char>& s) -> Char* {
-  return &s[0];
-}
-template <typename Container>
-inline auto get_data(Container& c) -> typename Container::value_type* {
-  return c.data();
-}
-
-// Attempts to reserve space for n extra characters in the output range.
-// Returns a pointer to the reserved range or a reference to it.
-template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
-#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
-__attribute__((no_sanitize("undefined")))
-#endif
-inline auto
-reserve(std::back_insert_iterator<Container> it, size_t n) ->
-    typename Container::value_type* {
-  Container& c = get_container(it);
-  size_t size = c.size();
-  c.resize(size + n);
-  return get_data(c) + size;
-}
-
-template <typename T>
-inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
-  buffer<T>& buf = get_container(it);
-  buf.try_reserve(buf.size() + n);
-  return it;
-}
-
-template <typename Iterator>
-constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
-  return it;
-}
-
-template <typename OutputIt>
-using reserve_iterator =
-    remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
-
-template <typename T, typename OutputIt>
-constexpr auto to_pointer(OutputIt, size_t) -> T* {
-  return nullptr;
-}
-template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
-  buffer<T>& buf = get_container(it);
-  auto size = buf.size();
-  if (buf.capacity() < size + n) return nullptr;
-  buf.try_resize(size + n);
-  return buf.data() + size;
-}
-
-template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
-inline auto base_iterator(std::back_insert_iterator<Container> it,
-                          typename Container::value_type*)
-    -> std::back_insert_iterator<Container> {
-  return it;
-}
-
-template <typename Iterator>
-constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
-  return it;
-}
-
-// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
-// instead (#1998).
-template <typename OutputIt, typename Size, typename T>
-FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
-    -> OutputIt {
-  for (Size i = 0; i < count; ++i) *out++ = value;
-  return out;
-}
-template <typename T, typename Size>
-FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
-  if (is_constant_evaluated()) {
-    return fill_n<T*, Size, T>(out, count, value);
-  }
-  std::memset(out, value, to_unsigned(count));
-  return out + count;
-}
-
-#ifdef __cpp_char8_t
-using char8_type = char8_t;
-#else
-enum char8_type : unsigned char {};
-#endif
-
-template <typename OutChar, typename InputIt, typename OutputIt>
-FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
-                                                  OutputIt out) -> OutputIt {
-  return copy_str<OutChar>(begin, end, out);
-}
-
-// A public domain branchless UTF-8 decoder by Christopher Wellons:
-// https://github.com/skeeto/branchless-utf8
-/* Decode the next character, c, from s, reporting errors in e.
- *
- * Since this is a branchless decoder, four bytes will be read from the
- * buffer regardless of the actual length of the next character. This
- * means the buffer _must_ have at least three bytes of zero padding
- * following the end of the data stream.
- *
- * Errors are reported in e, which will be non-zero if the parsed
- * character was somehow invalid: invalid byte sequence, non-canonical
- * encoding, or a surrogate half.
- *
- * The function returns a pointer to the next character. When an error
- * occurs, this pointer will be a guess that depends on the particular
- * error, but it will always advance at least one byte.
- */
-FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
-    -> const char* {
-  constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
-  constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
-  constexpr const int shiftc[] = {0, 18, 12, 6, 0};
-  constexpr const int shifte[] = {0, 6, 4, 2, 0};
-
-  int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
-      [static_cast<unsigned char>(*s) >> 3];
-  // Compute the pointer to the next character early so that the next
-  // iteration can start working on the next character. Neither Clang
-  // nor GCC figure out this reordering on their own.
-  const char* next = s + len + !len;
-
-  using uchar = unsigned char;
-
-  // Assume a four-byte character and load four bytes. Unused bits are
-  // shifted out.
-  *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
-  *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
-  *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
-  *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
-  *c >>= shiftc[len];
-
-  // Accumulate the various error conditions.
-  *e = (*c < mins[len]) << 6;       // non-canonical encoding
-  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
-  *e |= (*c > 0x10FFFF) << 8;       // out of range?
-  *e |= (uchar(s[1]) & 0xc0) >> 2;
-  *e |= (uchar(s[2]) & 0xc0) >> 4;
-  *e |= uchar(s[3]) >> 6;
-  *e ^= 0x2a;  // top two bits of each tail byte correct?
-  *e >>= shifte[len];
-
-  return next;
-}
-
-constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
-
-// Invokes f(cp, sv) for every code point cp in s with sv being the string view
-// corresponding to the code point. cp is invalid_code_point on error.
-template <typename F>
-FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
-  auto decode = [f](const char* buf_ptr, const char* ptr) {
-    auto cp = uint32_t();
-    auto error = 0;
-    auto end = utf8_decode(buf_ptr, &cp, &error);
-    bool result = f(error ? invalid_code_point : cp,
-                    string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
-    return result ? (error ? buf_ptr + 1 : end) : nullptr;
-  };
-  auto p = s.data();
-  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
-  if (s.size() >= block_size) {
-    for (auto end = p + s.size() - block_size + 1; p < end;) {
-      p = decode(p, p);
-      if (!p) return;
-    }
-  }
-  if (auto num_chars_left = s.data() + s.size() - p) {
-    char buf[2 * block_size - 1] = {};
-    copy_str<char>(p, p + num_chars_left, buf);
-    const char* buf_ptr = buf;
-    do {
-      auto end = decode(buf_ptr, p);
-      if (!end) return;
-      p += end - buf_ptr;
-      buf_ptr = end;
-    } while (buf_ptr - buf < num_chars_left);
-  }
-}
-
-template <typename Char>
-inline auto compute_width(basic_string_view<Char> s) -> size_t {
-  return s.size();
-}
-
-// Computes approximate display width of a UTF-8 string.
-FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
-  size_t num_code_points = 0;
-  // It is not a lambda for compatibility with C++14.
-  struct count_code_points {
-    size_t* count;
-    FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
-      *count += detail::to_unsigned(
-          1 +
-          (cp >= 0x1100 &&
-           (cp <= 0x115f ||  // Hangul Jamo init. consonants
-            cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
-            cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
-            // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
-            (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
-            (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
-            (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
-            (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
-            (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
-            (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
-            (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
-            (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
-            (cp >= 0x30000 && cp <= 0x3fffd) ||
-            // Miscellaneous Symbols and Pictographs + Emoticons:
-            (cp >= 0x1f300 && cp <= 0x1f64f) ||
-            // Supplemental Symbols and Pictographs:
-            (cp >= 0x1f900 && cp <= 0x1f9ff))));
-      return true;
-    }
-  };
-  // We could avoid branches by using utf8_decode directly.
-  for_each_codepoint(s, count_code_points{&num_code_points});
-  return num_code_points;
-}
-
-inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
-  return compute_width(
-      string_view(reinterpret_cast<const char*>(s.data()), s.size()));
-}
-
-template <typename Char>
-inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
-  size_t size = s.size();
-  return n < size ? n : size;
-}
-
-// Calculates the index of the nth code point in a UTF-8 string.
-inline auto code_point_index(string_view s, size_t n) -> size_t {
-  size_t result = s.size();
-  const char* begin = s.begin();
-  for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
-    if (n != 0) {
-      --n;
-      return true;
-    }
-    result = to_unsigned(sv.begin() - begin);
-    return false;
-  });
-  return result;
-}
-
-inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
-    -> size_t {
-  return code_point_index(
-      string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
-}
-
-template <typename T> struct is_integral : std::is_integral<T> {};
-template <> struct is_integral<int128_opt> : std::true_type {};
-template <> struct is_integral<uint128_t> : std::true_type {};
-
-template <typename T>
-using is_signed =
-    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
-                                     std::is_same<T, int128_opt>::value>;
-
-template <typename T>
-using is_integer =
-    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
-                  !std::is_same<T, char>::value &&
-                  !std::is_same<T, wchar_t>::value>;
-
-#ifndef FMT_USE_FLOAT
-#  define FMT_USE_FLOAT 1
-#endif
-#ifndef FMT_USE_DOUBLE
-#  define FMT_USE_DOUBLE 1
-#endif
-#ifndef FMT_USE_LONG_DOUBLE
-#  define FMT_USE_LONG_DOUBLE 1
-#endif
-
-#ifndef FMT_USE_FLOAT128
-#  ifdef __clang__
-// Clang emulates GCC, so it has to appear early.
-#    if FMT_HAS_INCLUDE(<quadmath.h>)
-#      define FMT_USE_FLOAT128 1
-#    endif
-#  elif defined(__GNUC__)
-// GNU C++:
-#    if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
-#      define FMT_USE_FLOAT128 1
-#    endif
-#  endif
-#  ifndef FMT_USE_FLOAT128
-#    define FMT_USE_FLOAT128 0
-#  endif
-#endif
-
-#if FMT_USE_FLOAT128
-using float128 = __float128;
-#else
-using float128 = void;
-#endif
-template <typename T> using is_float128 = std::is_same<T, float128>;
-
-template <typename T>
-using is_floating_point =
-    bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
-
-template <typename T, bool = std::is_floating_point<T>::value>
-struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
-                                     sizeof(T) <= sizeof(double)> {};
-template <typename T> struct is_fast_float<T, false> : std::false_type {};
-
-template <typename T>
-using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
-
-#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
-#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
-#endif
-
-template <typename T>
-template <typename U>
-void buffer<T>::append(const U* begin, const U* end) {
-  while (begin != end) {
-    auto count = to_unsigned(end - begin);
-    try_reserve(size_ + count);
-    auto free_cap = capacity_ - size_;
-    if (free_cap < count) count = free_cap;
-    std::uninitialized_copy_n(begin, count, ptr_ + size_);
-    size_ += count;
-    begin += count;
-  }
-}
-
-template <typename T, typename Enable = void>
-struct is_locale : std::false_type {};
-template <typename T>
-struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
-}  // namespace detail
-
-FMT_BEGIN_EXPORT
-
-// The number of characters to store in the basic_memory_buffer object itself
-// to avoid dynamic memory allocation.
-enum { inline_buffer_size = 500 };
-
-/**
-  \rst
-  A dynamically growing memory buffer for trivially copyable/constructible types
-  with the first ``SIZE`` elements stored in the object itself.
-
-  You can use the ``memory_buffer`` type alias for ``char`` instead.
-
-  **Example**::
-
-     auto out = fmt::memory_buffer();
-     fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
-
-  This will append the following output to the ``out`` object:
-
-  .. code-block:: none
-
-     The answer is 42.
-
-  The output can be converted to an ``std::string`` with ``to_string(out)``.
-  \endrst
- */
-template <typename T, size_t SIZE = inline_buffer_size,
-          typename Allocator = std::allocator<T>>
-class basic_memory_buffer final : public detail::buffer<T> {
- private:
-  T store_[SIZE];
-
-  // Don't inherit from Allocator to avoid generating type_info for it.
-  FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
-
-  // Deallocate memory allocated by the buffer.
-  FMT_CONSTEXPR20 void deallocate() {
-    T* data = this->data();
-    if (data != store_) alloc_.deallocate(data, this->capacity());
-  }
-
- protected:
-  FMT_CONSTEXPR20 void grow(size_t size) override {
-    detail::abort_fuzzing_if(size > 5000);
-    const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
-    size_t old_capacity = this->capacity();
-    size_t new_capacity = old_capacity + old_capacity / 2;
-    if (size > new_capacity)
-      new_capacity = size;
-    else if (new_capacity > max_size)
-      new_capacity = size > max_size ? size : max_size;
-    T* old_data = this->data();
-    T* new_data =
-        std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
-    // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
-    detail::assume(this->size() <= new_capacity);
-    // The following code doesn't throw, so the raw pointer above doesn't leak.
-    std::uninitialized_copy_n(old_data, this->size(), new_data);
-    this->set(new_data, new_capacity);
-    // deallocate must not throw according to the standard, but even if it does,
-    // the buffer already uses the new storage and will deallocate it in
-    // destructor.
-    if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
-  }
-
- public:
-  using value_type = T;
-  using const_reference = const T&;
-
-  FMT_CONSTEXPR20 explicit basic_memory_buffer(
-      const Allocator& alloc = Allocator())
-      : alloc_(alloc) {
-    this->set(store_, SIZE);
-    if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
-  }
-  FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
-
- private:
-  // Move data from other to this buffer.
-  FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
-    alloc_ = std::move(other.alloc_);
-    T* data = other.data();
-    size_t size = other.size(), capacity = other.capacity();
-    if (data == other.store_) {
-      this->set(store_, capacity);
-      detail::copy_str<T>(other.store_, other.store_ + size, store_);
-    } else {
-      this->set(data, capacity);
-      // Set pointer to the inline array so that delete is not called
-      // when deallocating.
-      other.set(other.store_, 0);
-      other.clear();
-    }
-    this->resize(size);
-  }
-
- public:
-  /**
-    \rst
-    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
-    of the other object to it.
-    \endrst
-   */
-  FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
-    move(other);
-  }
-
-  /**
-    \rst
-    Moves the content of the other ``basic_memory_buffer`` object to this one.
-    \endrst
-   */
-  auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
-    FMT_ASSERT(this != &other, "");
-    deallocate();
-    move(other);
-    return *this;
-  }
-
-  // Returns a copy of the allocator associated with this buffer.
-  auto get_allocator() const -> Allocator { return alloc_; }
-
-  /**
-    Resizes the buffer to contain *count* elements. If T is a POD type new
-    elements may not be initialized.
-   */
-  FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
-
-  /** Increases the buffer capacity to *new_capacity*. */
-  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
-
-  using detail::buffer<T>::append;
-  template <typename ContiguousRange>
-  void append(const ContiguousRange& range) {
-    append(range.data(), range.data() + range.size());
-  }
-};
-
-using memory_buffer = basic_memory_buffer<char>;
-
-template <typename T, size_t SIZE, typename Allocator>
-struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
-};
-
-FMT_END_EXPORT
-namespace detail {
-FMT_API auto write_console(int fd, string_view text) -> bool;
-FMT_API auto write_console(std::FILE* f, string_view text) -> bool;
-FMT_API void print(std::FILE*, string_view);
-}  // namespace detail
-
-FMT_BEGIN_EXPORT
-
-// Suppress a misleading warning in older versions of clang.
-#if FMT_CLANG_VERSION
-#  pragma clang diagnostic ignored "-Wweak-vtables"
-#endif
-
-/** An error reported from a formatting function. */
-class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
- public:
-  using std::runtime_error::runtime_error;
-};
-
-namespace detail_exported {
-#if FMT_USE_NONTYPE_TEMPLATE_ARGS
-template <typename Char, size_t N> struct fixed_string {
-  constexpr fixed_string(const Char (&str)[N]) {
-    detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
-                                               str + N, data);
-  }
-  Char data[N] = {};
-};
-#endif
-
-// Converts a compile-time string to basic_string_view.
-template <typename Char, size_t N>
-constexpr auto compile_string_to_view(const Char (&s)[N])
-    -> basic_string_view<Char> {
-  // Remove trailing NUL character if needed. Won't be present if this is used
-  // with a raw character array (i.e. not defined as a string).
-  return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
-}
-template <typename Char>
-constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
-    -> basic_string_view<Char> {
-  return {s.data(), s.size()};
-}
-}  // namespace detail_exported
-
-class loc_value {
- private:
-  basic_format_arg<format_context> value_;
-
- public:
-  template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
-  loc_value(T value) : value_(detail::make_arg<format_context>(value)) {}
-
-  template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
-  loc_value(T) {}
-
-  template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
-    return visit_format_arg(vis, value_);
-  }
-};
-
-// A locale facet that formats values in UTF-8.
-// It is parameterized on the locale to avoid the heavy <locale> include.
-template <typename Locale> class format_facet : public Locale::facet {
- private:
-  std::string separator_;
-  std::string grouping_;
-  std::string decimal_point_;
-
- protected:
-  virtual auto do_put(appender out, loc_value val,
-                      const format_specs<>& specs) const -> bool;
-
- public:
-  static FMT_API typename Locale::id id;
-
-  explicit format_facet(Locale& loc);
-  explicit format_facet(string_view sep = "",
-                        std::initializer_list<unsigned char> g = {3},
-                        std::string decimal_point = ".")
-      : separator_(sep.data(), sep.size()),
-        grouping_(g.begin(), g.end()),
-        decimal_point_(decimal_point) {}
-
-  auto put(appender out, loc_value val, const format_specs<>& specs) const
-      -> bool {
-    return do_put(out, val, specs);
-  }
-};
-
-namespace detail {
-
-// Returns true if value is negative, false otherwise.
-// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
-template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
-constexpr auto is_negative(T value) -> bool {
-  return value < 0;
-}
-template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
-constexpr auto is_negative(T) -> bool {
-  return false;
-}
-
-template <typename T>
-FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
-  if (std::is_same<T, float>()) return FMT_USE_FLOAT;
-  if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
-  if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
-  return true;
-}
-
-// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
-// represent all values of an integral type T.
-template <typename T>
-using uint32_or_64_or_128_t =
-    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
-                  uint32_t,
-                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
-template <typename T>
-using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
-
-#define FMT_POWERS_OF_10(factor)                                  \
-  factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
-      (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
-      (factor) * 100000000, (factor) * 1000000000
-
-// Converts value in the range [0, 100) to a string.
-constexpr auto digits2(size_t value) -> const char* {
-  // GCC generates slightly better code when value is pointer-size.
-  return &"0001020304050607080910111213141516171819"
-         "2021222324252627282930313233343536373839"
-         "4041424344454647484950515253545556575859"
-         "6061626364656667686970717273747576777879"
-         "8081828384858687888990919293949596979899"[value * 2];
-}
-
-// Sign is a template parameter to workaround a bug in gcc 4.8.
-template <typename Char, typename Sign> constexpr auto sign(Sign s) -> Char {
-#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
-  static_assert(std::is_same<Sign, sign_t>::value, "");
-#endif
-  return static_cast<Char>("\0-+ "[s]);
-}
-
-template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
-  int count = 1;
-  for (;;) {
-    // Integer division is slow so do it for a group of four digits instead
-    // of for every digit. The idea comes from the talk by Alexandrescu
-    // "Three Optimization Tips for C++". See speed-test for a comparison.
-    if (n < 10) return count;
-    if (n < 100) return count + 1;
-    if (n < 1000) return count + 2;
-    if (n < 10000) return count + 3;
-    n /= 10000u;
-    count += 4;
-  }
-}
-#if FMT_USE_INT128
-FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
-  return count_digits_fallback(n);
-}
-#endif
-
-#ifdef FMT_BUILTIN_CLZLL
-// It is a separate function rather than a part of count_digits to workaround
-// the lack of static constexpr in constexpr functions.
-inline auto do_count_digits(uint64_t n) -> int {
-  // This has comparable performance to the version by Kendall Willets
-  // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
-  // but uses smaller tables.
-  // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
-  static constexpr uint8_t bsr2log10[] = {
-      1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
-      6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
-      10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
-      15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
-  auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
-  static constexpr const uint64_t zero_or_powers_of_10[] = {
-      0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
-      10000000000000000000ULL};
-  return t - (n < zero_or_powers_of_10[t]);
-}
-#endif
-
-// Returns the number of decimal digits in n. Leading zeros are not counted
-// except for n == 0 in which case count_digits returns 1.
-FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
-#ifdef FMT_BUILTIN_CLZLL
-  if (!is_constant_evaluated()) {
-    return do_count_digits(n);
-  }
-#endif
-  return count_digits_fallback(n);
-}
-
-// Counts the number of digits in n. BITS = log2(radix).
-template <int BITS, typename UInt>
-FMT_CONSTEXPR auto count_digits(UInt n) -> int {
-#ifdef FMT_BUILTIN_CLZ
-  if (!is_constant_evaluated() && num_bits<UInt>() == 32)
-    return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
-#endif
-  // Lambda avoids unreachable code warnings from NVHPC.
-  return [](UInt m) {
-    int num_digits = 0;
-    do {
-      ++num_digits;
-    } while ((m >>= BITS) != 0);
-    return num_digits;
-  }(n);
-}
-
-#ifdef FMT_BUILTIN_CLZ
-// It is a separate function rather than a part of count_digits to workaround
-// the lack of static constexpr in constexpr functions.
-FMT_INLINE auto do_count_digits(uint32_t n) -> int {
-// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
-// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
-#  define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
-  static constexpr uint64_t table[] = {
-      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
-      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
-      FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
-      FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
-      FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
-      FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
-      FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
-      FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
-      FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
-      FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
-      FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
-  };
-  auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
-  return static_cast<int>((n + inc) >> 32);
-}
-#endif
-
-// Optional version of count_digits for better performance on 32-bit platforms.
-FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
-#ifdef FMT_BUILTIN_CLZ
-  if (!is_constant_evaluated()) {
-    return do_count_digits(n);
-  }
-#endif
-  return count_digits_fallback(n);
-}
-
-template <typename Int> constexpr auto digits10() noexcept -> int {
-  return std::numeric_limits<Int>::digits10;
-}
-template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
-template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
-
-template <typename Char> struct thousands_sep_result {
-  std::string grouping;
-  Char thousands_sep;
-};
-
-template <typename Char>
-FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
-template <typename Char>
-inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
-  auto result = thousands_sep_impl<char>(loc);
-  return {result.grouping, Char(result.thousands_sep)};
-}
-template <>
-inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
-  return thousands_sep_impl<wchar_t>(loc);
-}
-
-template <typename Char>
-FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
-template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
-  return Char(decimal_point_impl<char>(loc));
-}
-template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
-  return decimal_point_impl<wchar_t>(loc);
-}
-
-// Compares two characters for equality.
-template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
-  return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
-}
-inline auto equal2(const char* lhs, const char* rhs) -> bool {
-  return memcmp(lhs, rhs, 2) == 0;
-}
-
-// Copies two characters from src to dst.
-template <typename Char>
-FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
-  if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
-    memcpy(dst, src, 2);
-    return;
-  }
-  *dst++ = static_cast<Char>(*src++);
-  *dst = static_cast<Char>(*src);
-}
-
-template <typename Iterator> struct format_decimal_result {
-  Iterator begin;
-  Iterator end;
-};
-
-// Formats a decimal unsigned integer value writing into out pointing to a
-// buffer of specified size. The caller must ensure that the buffer is large
-// enough.
-template <typename Char, typename UInt>
-FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
-    -> format_decimal_result<Char*> {
-  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
-  out += size;
-  Char* end = out;
-  while (value >= 100) {
-    // Integer division is slow so do it for a group of two digits instead
-    // of for every digit. The idea comes from the talk by Alexandrescu
-    // "Three Optimization Tips for C++". See speed-test for a comparison.
-    out -= 2;
-    copy2(out, digits2(static_cast<size_t>(value % 100)));
-    value /= 100;
-  }
-  if (value < 10) {
-    *--out = static_cast<Char>('0' + value);
-    return {out, end};
-  }
-  out -= 2;
-  copy2(out, digits2(static_cast<size_t>(value)));
-  return {out, end};
-}
-
-template <typename Char, typename UInt, typename Iterator,
-          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
-FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
-    -> format_decimal_result<Iterator> {
-  // Buffer is large enough to hold all digits (digits10 + 1).
-  Char buffer[digits10<UInt>() + 1] = {};
-  auto end = format_decimal(buffer, value, size).end;
-  return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
-}
-
-template <unsigned BASE_BITS, typename Char, typename UInt>
-FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
-                               bool upper = false) -> Char* {
-  buffer += num_digits;
-  Char* end = buffer;
-  do {
-    const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
-    unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
-    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
-                                                : digits[digit]);
-  } while ((value >>= BASE_BITS) != 0);
-  return end;
-}
-
-template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
-FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits,
-                                      bool upper = false) -> It {
-  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
-    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
-    return out;
-  }
-  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
-  char buffer[num_bits<UInt>() / BASE_BITS + 1] = {};
-  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
-  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
-}
-
-// A converter from UTF-8 to UTF-16.
-class utf8_to_utf16 {
- private:
-  basic_memory_buffer<wchar_t> buffer_;
-
- public:
-  FMT_API explicit utf8_to_utf16(string_view s);
-  operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
-  auto size() const -> size_t { return buffer_.size() - 1; }
-  auto c_str() const -> const wchar_t* { return &buffer_[0]; }
-  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
-};
-
-enum class to_utf8_error_policy { abort, replace };
-
-// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
-template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
- private:
-  Buffer buffer_;
-
- public:
-  to_utf8() {}
-  explicit to_utf8(basic_string_view<WChar> s,
-                   to_utf8_error_policy policy = to_utf8_error_policy::abort) {
-    static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
-                  "Expect utf16 or utf32");
-    if (!convert(s, policy))
-      FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
-                                                      : "invalid utf32"));
-  }
-  operator string_view() const { return string_view(&buffer_[0], size()); }
-  auto size() const -> size_t { return buffer_.size() - 1; }
-  auto c_str() const -> const char* { return &buffer_[0]; }
-  auto str() const -> std::string { return std::string(&buffer_[0], size()); }
-
-  // Performs conversion returning a bool instead of throwing exception on
-  // conversion error. This method may still throw in case of memory allocation
-  // error.
-  auto convert(basic_string_view<WChar> s,
-               to_utf8_error_policy policy = to_utf8_error_policy::abort)
-      -> bool {
-    if (!convert(buffer_, s, policy)) return false;
-    buffer_.push_back(0);
-    return true;
-  }
-  static auto convert(Buffer& buf, basic_string_view<WChar> s,
-                      to_utf8_error_policy policy = to_utf8_error_policy::abort)
-      -> bool {
-    for (auto p = s.begin(); p != s.end(); ++p) {
-      uint32_t c = static_cast<uint32_t>(*p);
-      if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
-        // Handle a surrogate pair.
-        ++p;
-        if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
-          if (policy == to_utf8_error_policy::abort) return false;
-          buf.append(string_view("\xEF\xBF\xBD"));
-          --p;
-        } else {
-          c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
-        }
-      } else if (c < 0x80) {
-        buf.push_back(static_cast<char>(c));
-      } else if (c < 0x800) {
-        buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
-        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
-      } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
-        buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
-        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
-        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
-      } else if (c >= 0x10000 && c <= 0x10ffff) {
-        buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
-        buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
-        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
-        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
-      } else {
-        return false;
-      }
-    }
-    return true;
-  }
-};
-
-// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
-inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
-#if FMT_USE_INT128
-  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
-  return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
-#elif defined(_MSC_VER) && defined(_M_X64)
-  auto hi = uint64_t();
-  auto lo = _umul128(x, y, &hi);
-  return {hi, lo};
-#else
-  const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
-
-  uint64_t a = x >> 32;
-  uint64_t b = x & mask;
-  uint64_t c = y >> 32;
-  uint64_t d = y & mask;
-
-  uint64_t ac = a * c;
-  uint64_t bc = b * c;
-  uint64_t ad = a * d;
-  uint64_t bd = b * d;
-
-  uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
-
-  return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
-          (intermediate << 32) + (bd & mask)};
-#endif
-}
-
-namespace dragonbox {
-// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
-// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
-inline auto floor_log10_pow2(int e) noexcept -> int {
-  FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
-  static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
-  return (e * 315653) >> 20;
-}
-
-inline auto floor_log2_pow10(int e) noexcept -> int {
-  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
-  return (e * 1741647) >> 19;
-}
-
-// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
-inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
-#if FMT_USE_INT128
-  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
-  return static_cast<uint64_t>(p >> 64);
-#elif defined(_MSC_VER) && defined(_M_X64)
-  return __umulh(x, y);
-#else
-  return umul128(x, y).high();
-#endif
-}
-
-// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
-// 128-bit unsigned integer.
-inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
-    -> uint128_fallback {
-  uint128_fallback r = umul128(x, y.high());
-  r += umul128_upper64(x, y.low());
-  return r;
-}
-
-FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
-
-// Type-specific information that Dragonbox uses.
-template <typename T, typename Enable = void> struct float_info;
-
-template <> struct float_info<float> {
-  using carrier_uint = uint32_t;
-  static const int exponent_bits = 8;
-  static const int kappa = 1;
-  static const int big_divisor = 100;
-  static const int small_divisor = 10;
-  static const int min_k = -31;
-  static const int max_k = 46;
-  static const int shorter_interval_tie_lower_threshold = -35;
-  static const int shorter_interval_tie_upper_threshold = -35;
-};
-
-template <> struct float_info<double> {
-  using carrier_uint = uint64_t;
-  static const int exponent_bits = 11;
-  static const int kappa = 2;
-  static const int big_divisor = 1000;
-  static const int small_divisor = 100;
-  static const int min_k = -292;
-  static const int max_k = 341;
-  static const int shorter_interval_tie_lower_threshold = -77;
-  static const int shorter_interval_tie_upper_threshold = -77;
-};
-
-// An 80- or 128-bit floating point number.
-template <typename T>
-struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
-                                 std::numeric_limits<T>::digits == 113 ||
-                                 is_float128<T>::value>> {
-  using carrier_uint = detail::uint128_t;
-  static const int exponent_bits = 15;
-};
-
-// A double-double floating point number.
-template <typename T>
-struct float_info<T, enable_if_t<is_double_double<T>::value>> {
-  using carrier_uint = detail::uint128_t;
-};
-
-template <typename T> struct decimal_fp {
-  using significand_type = typename float_info<T>::carrier_uint;
-  significand_type significand;
-  int exponent;
-};
-
-template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
-}  // namespace dragonbox
-
-// Returns true iff Float has the implicit bit which is not stored.
-template <typename Float> constexpr auto has_implicit_bit() -> bool {
-  // An 80-bit FP number has a 64-bit significand an no implicit bit.
-  return std::numeric_limits<Float>::digits != 64;
-}
-
-// Returns the number of significand bits stored in Float. The implicit bit is
-// not counted since it is not stored.
-template <typename Float> constexpr auto num_significand_bits() -> int {
-  // std::numeric_limits may not support __float128.
-  return is_float128<Float>() ? 112
-                              : (std::numeric_limits<Float>::digits -
-                                 (has_implicit_bit<Float>() ? 1 : 0));
-}
-
-template <typename Float>
-constexpr auto exponent_mask() ->
-    typename dragonbox::float_info<Float>::carrier_uint {
-  using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
-  return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
-         << num_significand_bits<Float>();
-}
-template <typename Float> constexpr auto exponent_bias() -> int {
-  // std::numeric_limits may not support __float128.
-  return is_float128<Float>() ? 16383
-                              : std::numeric_limits<Float>::max_exponent - 1;
-}
-
-// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
-template <typename Char, typename It>
-FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
-  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
-  if (exp < 0) {
-    *it++ = static_cast<Char>('-');
-    exp = -exp;
-  } else {
-    *it++ = static_cast<Char>('+');
-  }
-  if (exp >= 100) {
-    const char* top = digits2(to_unsigned(exp / 100));
-    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
-    *it++ = static_cast<Char>(top[1]);
-    exp %= 100;
-  }
-  const char* d = digits2(to_unsigned(exp));
-  *it++ = static_cast<Char>(d[0]);
-  *it++ = static_cast<Char>(d[1]);
-  return it;
-}
-
-// A floating-point number f * pow(2, e) where F is an unsigned type.
-template <typename F> struct basic_fp {
-  F f;
-  int e;
-
-  static constexpr const int num_significand_bits =
-      static_cast<int>(sizeof(F) * num_bits<unsigned char>());
-
-  constexpr basic_fp() : f(0), e(0) {}
-  constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
-
-  // Constructs fp from an IEEE754 floating-point number.
-  template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
-
-  // Assigns n to this and return true iff predecessor is closer than successor.
-  template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
-  FMT_CONSTEXPR auto assign(Float n) -> bool {
-    static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
-    // Assume Float is in the format [sign][exponent][significand].
-    using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
-    const auto num_float_significand_bits =
-        detail::num_significand_bits<Float>();
-    const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
-    const auto significand_mask = implicit_bit - 1;
-    auto u = bit_cast<carrier_uint>(n);
-    f = static_cast<F>(u & significand_mask);
-    auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
-                                     num_float_significand_bits);
-    // The predecessor is closer if n is a normalized power of 2 (f == 0)
-    // other than the smallest normalized number (biased_e > 1).
-    auto is_predecessor_closer = f == 0 && biased_e > 1;
-    if (biased_e == 0)
-      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
-    else if (has_implicit_bit<Float>())
-      f += static_cast<F>(implicit_bit);
-    e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
-    if (!has_implicit_bit<Float>()) ++e;
-    return is_predecessor_closer;
-  }
-
-  template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
-  FMT_CONSTEXPR auto assign(Float n) -> bool {
-    static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
-    return assign(static_cast<double>(n));
-  }
-};
-
-using fp = basic_fp<unsigned long long>;
-
-// Normalizes the value converted from double and multiplied by (1 << SHIFT).
-template <int SHIFT = 0, typename F>
-FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
-  // Handle subnormals.
-  const auto implicit_bit = F(1) << num_significand_bits<double>();
-  const auto shifted_implicit_bit = implicit_bit << SHIFT;
-  while ((value.f & shifted_implicit_bit) == 0) {
-    value.f <<= 1;
-    --value.e;
-  }
-  // Subtract 1 to account for hidden bit.
-  const auto offset = basic_fp<F>::num_significand_bits -
-                      num_significand_bits<double>() - SHIFT - 1;
-  value.f <<= offset;
-  value.e -= offset;
-  return value;
-}
-
-// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
-FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
-#if FMT_USE_INT128
-  auto product = static_cast<__uint128_t>(lhs) * rhs;
-  auto f = static_cast<uint64_t>(product >> 64);
-  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
-#else
-  // Multiply 32-bit parts of significands.
-  uint64_t mask = (1ULL << 32) - 1;
-  uint64_t a = lhs >> 32, b = lhs & mask;
-  uint64_t c = rhs >> 32, d = rhs & mask;
-  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
-  // Compute mid 64-bit of result and round.
-  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
-  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
-#endif
-}
-
-FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
-  return {multiply(x.f, y.f), x.e + y.e + 64};
-}
-
-template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
-using convert_float_result =
-    conditional_t<std::is_same<T, float>::value || doublish, double, T>;
-
-template <typename T>
-constexpr auto convert_float(T value) -> convert_float_result<T> {
-  return static_cast<convert_float_result<T>>(value);
-}
-
-template <typename OutputIt, typename Char>
-FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
-                                     const fill_t<Char>& fill) -> OutputIt {
-  auto fill_size = fill.size();
-  if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
-  auto data = fill.data();
-  for (size_t i = 0; i < n; ++i)
-    it = copy_str<Char>(data, data + fill_size, it);
-  return it;
-}
-
-// Writes the output of f, padded according to format specifications in specs.
-// size: output size in code units.
-// width: output display width in (terminal) column positions.
-template <align::type align = align::left, typename OutputIt, typename Char,
-          typename F>
-FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs,
-                                size_t size, size_t width, F&& f) -> OutputIt {
-  static_assert(align == align::left || align == align::right, "");
-  unsigned spec_width = to_unsigned(specs.width);
-  size_t padding = spec_width > width ? spec_width - width : 0;
-  // Shifts are encoded as string literals because static constexpr is not
-  // supported in constexpr functions.
-  auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
-  size_t left_padding = padding >> shifts[specs.align];
-  size_t right_padding = padding - left_padding;
-  auto it = reserve(out, size + padding * specs.fill.size());
-  if (left_padding != 0) it = fill(it, left_padding, specs.fill);
-  it = f(it);
-  if (right_padding != 0) it = fill(it, right_padding, specs.fill);
-  return base_iterator(out, it);
-}
-
-template <align::type align = align::left, typename OutputIt, typename Char,
-          typename F>
-constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs,
-                            size_t size, F&& f) -> OutputIt {
-  return write_padded<align>(out, specs, size, size, f);
-}
-
-template <align::type align = align::left, typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
-                               const format_specs<Char>& specs) -> OutputIt {
-  return write_padded<align>(
-      out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
-        const char* data = bytes.data();
-        return copy_str<Char>(data, data + bytes.size(), it);
-      });
-}
-
-template <typename Char, typename OutputIt, typename UIntPtr>
-auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs)
-    -> OutputIt {
-  int num_digits = count_digits<4>(value);
-  auto size = to_unsigned(num_digits) + size_t(2);
-  auto write = [=](reserve_iterator<OutputIt> it) {
-    *it++ = static_cast<Char>('0');
-    *it++ = static_cast<Char>('x');
-    return format_uint<4, Char>(it, value, num_digits);
-  };
-  return specs ? write_padded<align::right>(out, *specs, size, write)
-               : base_iterator(out, write(reserve(out, size)));
-}
-
-// Returns true iff the code point cp is printable.
-FMT_API auto is_printable(uint32_t cp) -> bool;
-
-inline auto needs_escape(uint32_t cp) -> bool {
-  return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
-         !is_printable(cp);
-}
-
-template <typename Char> struct find_escape_result {
-  const Char* begin;
-  const Char* end;
-  uint32_t cp;
-};
-
-template <typename Char>
-using make_unsigned_char =
-    typename conditional_t<std::is_integral<Char>::value,
-                           std::make_unsigned<Char>,
-                           type_identity<uint32_t>>::type;
-
-template <typename Char>
-auto find_escape(const Char* begin, const Char* end)
-    -> find_escape_result<Char> {
-  for (; begin != end; ++begin) {
-    uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
-    if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
-    if (needs_escape(cp)) return {begin, begin + 1, cp};
-  }
-  return {begin, nullptr, 0};
-}
-
-inline auto find_escape(const char* begin, const char* end)
-    -> find_escape_result<char> {
-  if (!is_utf8()) return find_escape<char>(begin, end);
-  auto result = find_escape_result<char>{end, nullptr, 0};
-  for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
-                     [&](uint32_t cp, string_view sv) {
-                       if (needs_escape(cp)) {
-                         result = {sv.begin(), sv.end(), cp};
-                         return false;
-                       }
-                       return true;
-                     });
-  return result;
-}
-
-#define FMT_STRING_IMPL(s, base, explicit)                                    \
-  [] {                                                                        \
-    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \
-    /* Use a macro-like name to avoid shadowing warnings. */                  \
-    struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base {               \
-      using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
-      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \
-      operator fmt::basic_string_view<char_type>() const {                    \
-        return fmt::detail_exported::compile_string_to_view<char_type>(s);    \
-      }                                                                       \
-    };                                                                        \
-    return FMT_COMPILE_STRING();                                              \
-  }()
-
-/**
-  \rst
-  Constructs a compile-time format string from a string literal *s*.
-
-  **Example**::
-
-    // A compile-time error because 'd' is an invalid specifier for strings.
-    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
-  \endrst
- */
-#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
-
-template <size_t width, typename Char, typename OutputIt>
-auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
-  *out++ = static_cast<Char>('\\');
-  *out++ = static_cast<Char>(prefix);
-  Char buf[width];
-  fill_n(buf, width, static_cast<Char>('0'));
-  format_uint<4>(buf, cp, width);
-  return copy_str<Char>(buf, buf + width, out);
-}
-
-template <typename OutputIt, typename Char>
-auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
-    -> OutputIt {
-  auto c = static_cast<Char>(escape.cp);
-  switch (escape.cp) {
-  case '\n':
-    *out++ = static_cast<Char>('\\');
-    c = static_cast<Char>('n');
-    break;
-  case '\r':
-    *out++ = static_cast<Char>('\\');
-    c = static_cast<Char>('r');
-    break;
-  case '\t':
-    *out++ = static_cast<Char>('\\');
-    c = static_cast<Char>('t');
-    break;
-  case '"':
-    FMT_FALLTHROUGH;
-  case '\'':
-    FMT_FALLTHROUGH;
-  case '\\':
-    *out++ = static_cast<Char>('\\');
-    break;
-  default:
-    if (escape.cp < 0x100) {
-      return write_codepoint<2, Char>(out, 'x', escape.cp);
-    }
-    if (escape.cp < 0x10000) {
-      return write_codepoint<4, Char>(out, 'u', escape.cp);
-    }
-    if (escape.cp < 0x110000) {
-      return write_codepoint<8, Char>(out, 'U', escape.cp);
-    }
-    for (Char escape_char : basic_string_view<Char>(
-             escape.begin, to_unsigned(escape.end - escape.begin))) {
-      out = write_codepoint<2, Char>(out, 'x',
-                                     static_cast<uint32_t>(escape_char) & 0xFF);
-    }
-    return out;
-  }
-  *out++ = c;
-  return out;
-}
-
-template <typename Char, typename OutputIt>
-auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
-    -> OutputIt {
-  *out++ = static_cast<Char>('"');
-  auto begin = str.begin(), end = str.end();
-  do {
-    auto escape = find_escape(begin, end);
-    out = copy_str<Char>(begin, escape.begin, out);
-    begin = escape.end;
-    if (!begin) break;
-    out = write_escaped_cp<OutputIt, Char>(out, escape);
-  } while (begin != end);
-  *out++ = static_cast<Char>('"');
-  return out;
-}
-
-template <typename Char, typename OutputIt>
-auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
-  Char v_array[1] = {v};
-  *out++ = static_cast<Char>('\'');
-  if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
-      v == static_cast<Char>('\'')) {
-    out = write_escaped_cp(out,
-                           find_escape_result<Char>{v_array, v_array + 1,
-                                                    static_cast<uint32_t>(v)});
-  } else {
-    *out++ = v;
-  }
-  *out++ = static_cast<Char>('\'');
-  return out;
-}
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
-                              const format_specs<Char>& specs) -> OutputIt {
-  bool is_debug = specs.type == presentation_type::debug;
-  return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
-    if (is_debug) return write_escaped_char(it, value);
-    *it++ = value;
-    return it;
-  });
-}
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out, Char value,
-                         const format_specs<Char>& specs, locale_ref loc = {})
-    -> OutputIt {
-  // char is formatted as unsigned char for consistency across platforms.
-  using unsigned_type =
-      conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
-  return check_char_specs(specs)
-             ? write_char(out, value, specs)
-             : write(out, static_cast<unsigned_type>(value), specs, loc);
-}
-
-// Data for write_int that doesn't depend on output iterator type. It is used to
-// avoid template code bloat.
-template <typename Char> struct write_int_data {
-  size_t size;
-  size_t padding;
-
-  FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
-                               const format_specs<Char>& specs)
-      : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
-    if (specs.align == align::numeric) {
-      auto width = to_unsigned(specs.width);
-      if (width > size) {
-        padding = width - size;
-        size = width;
-      }
-    } else if (specs.precision > num_digits) {
-      size = (prefix >> 24) + to_unsigned(specs.precision);
-      padding = to_unsigned(specs.precision - num_digits);
-    }
-  }
-};
-
-// Writes an integer in the format
-//   <left-padding><prefix><numeric-padding><digits><right-padding>
-// where <digits> are written by write_digits(it).
-// prefix contains chars in three lower bytes and the size in the fourth byte.
-template <typename OutputIt, typename Char, typename W>
-FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
-                                        unsigned prefix,
-                                        const format_specs<Char>& specs,
-                                        W write_digits) -> OutputIt {
-  // Slightly faster check for specs.width == 0 && specs.precision == -1.
-  if ((specs.width | (specs.precision + 1)) == 0) {
-    auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
-    if (prefix != 0) {
-      for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
-        *it++ = static_cast<Char>(p & 0xff);
-    }
-    return base_iterator(out, write_digits(it));
-  }
-  auto data = write_int_data<Char>(num_digits, prefix, specs);
-  return write_padded<align::right>(
-      out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
-        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
-          *it++ = static_cast<Char>(p & 0xff);
-        it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
-        return write_digits(it);
-      });
-}
-
-template <typename Char> class digit_grouping {
- private:
-  std::string grouping_;
-  std::basic_string<Char> thousands_sep_;
-
-  struct next_state {
-    std::string::const_iterator group;
-    int pos;
-  };
-  auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
-
-  // Returns the next digit group separator position.
-  auto next(next_state& state) const -> int {
-    if (thousands_sep_.empty()) return max_value<int>();
-    if (state.group == grouping_.end()) return state.pos += grouping_.back();
-    if (*state.group <= 0 || *state.group == max_value<char>())
-      return max_value<int>();
-    state.pos += *state.group++;
-    return state.pos;
-  }
-
- public:
-  explicit digit_grouping(locale_ref loc, bool localized = true) {
-    if (!localized) return;
-    auto sep = thousands_sep<Char>(loc);
-    grouping_ = sep.grouping;
-    if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
-  }
-  digit_grouping(std::string grouping, std::basic_string<Char> sep)
-      : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
-
-  auto has_separator() const -> bool { return !thousands_sep_.empty(); }
-
-  auto count_separators(int num_digits) const -> int {
-    int count = 0;
-    auto state = initial_state();
-    while (num_digits > next(state)) ++count;
-    return count;
-  }
-
-  // Applies grouping to digits and write the output to out.
-  template <typename Out, typename C>
-  auto apply(Out out, basic_string_view<C> digits) const -> Out {
-    auto num_digits = static_cast<int>(digits.size());
-    auto separators = basic_memory_buffer<int>();
-    separators.push_back(0);
-    auto state = initial_state();
-    while (int i = next(state)) {
-      if (i >= num_digits) break;
-      separators.push_back(i);
-    }
-    for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
-         i < num_digits; ++i) {
-      if (num_digits - i == separators[sep_index]) {
-        out =
-            copy_str<Char>(thousands_sep_.data(),
-                           thousands_sep_.data() + thousands_sep_.size(), out);
-        --sep_index;
-      }
-      *out++ = static_cast<Char>(digits[to_unsigned(i)]);
-    }
-    return out;
-  }
-};
-
-FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
-  prefix |= prefix != 0 ? value << 8 : value;
-  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
-}
-
-// Writes a decimal integer with digit grouping.
-template <typename OutputIt, typename UInt, typename Char>
-auto write_int(OutputIt out, UInt value, unsigned prefix,
-               const format_specs<Char>& specs,
-               const digit_grouping<Char>& grouping) -> OutputIt {
-  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
-  int num_digits = 0;
-  auto buffer = memory_buffer();
-  switch (specs.type) {
-  case presentation_type::none:
-  case presentation_type::dec: {
-    num_digits = count_digits(value);
-    format_decimal<char>(appender(buffer), value, num_digits);
-    break;
-  }
-  case presentation_type::hex_lower:
-  case presentation_type::hex_upper: {
-    bool upper = specs.type == presentation_type::hex_upper;
-    if (specs.alt)
-      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
-    num_digits = count_digits<4>(value);
-    format_uint<4, char>(appender(buffer), value, num_digits, upper);
-    break;
-  }
-  case presentation_type::bin_lower:
-  case presentation_type::bin_upper: {
-    bool upper = specs.type == presentation_type::bin_upper;
-    if (specs.alt)
-      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
-    num_digits = count_digits<1>(value);
-    format_uint<1, char>(appender(buffer), value, num_digits);
-    break;
-  }
-  case presentation_type::oct: {
-    num_digits = count_digits<3>(value);
-    // Octal prefix '0' is counted as a digit, so only add it if precision
-    // is not greater than the number of digits.
-    if (specs.alt && specs.precision <= num_digits && value != 0)
-      prefix_append(prefix, '0');
-    format_uint<3, char>(appender(buffer), value, num_digits);
-    break;
-  }
-  case presentation_type::chr:
-    return write_char(out, static_cast<Char>(value), specs);
-  default:
-    throw_format_error("invalid format specifier");
-  }
-
-  unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
-                  to_unsigned(grouping.count_separators(num_digits));
-  return write_padded<align::right>(
-      out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
-        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
-          *it++ = static_cast<Char>(p & 0xff);
-        return grouping.apply(it, string_view(buffer.data(), buffer.size()));
-      });
-}
-
-// Writes a localized value.
-FMT_API auto write_loc(appender out, loc_value value,
-                       const format_specs<>& specs, locale_ref loc) -> bool;
-template <typename OutputIt, typename Char>
-inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&,
-                      locale_ref) -> bool {
-  return false;
-}
-
-template <typename UInt> struct write_int_arg {
-  UInt abs_value;
-  unsigned prefix;
-};
-
-template <typename T>
-FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
-    -> write_int_arg<uint32_or_64_or_128_t<T>> {
-  auto prefix = 0u;
-  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
-  if (is_negative(value)) {
-    prefix = 0x01000000 | '-';
-    abs_value = 0 - abs_value;
-  } else {
-    constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
-                                            0x1000000u | ' '};
-    prefix = prefixes[sign];
-  }
-  return {abs_value, prefix};
-}
-
-template <typename Char = char> struct loc_writer {
-  buffer_appender<Char> out;
-  const format_specs<Char>& specs;
-  std::basic_string<Char> sep;
-  std::string grouping;
-  std::basic_string<Char> decimal_point;
-
-  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
-  auto operator()(T value) -> bool {
-    auto arg = make_write_int_arg(value, specs.sign);
-    write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
-              specs, digit_grouping<Char>(grouping, sep));
-    return true;
-  }
-
-  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
-  auto operator()(T) -> bool {
-    return false;
-  }
-};
-
-template <typename Char, typename OutputIt, typename T>
-FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
-                                        const format_specs<Char>& specs,
-                                        locale_ref) -> OutputIt {
-  static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
-  auto abs_value = arg.abs_value;
-  auto prefix = arg.prefix;
-  switch (specs.type) {
-  case presentation_type::none:
-  case presentation_type::dec: {
-    auto num_digits = count_digits(abs_value);
-    return write_int(
-        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
-          return format_decimal<Char>(it, abs_value, num_digits).end;
-        });
-  }
-  case presentation_type::hex_lower:
-  case presentation_type::hex_upper: {
-    bool upper = specs.type == presentation_type::hex_upper;
-    if (specs.alt)
-      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
-    int num_digits = count_digits<4>(abs_value);
-    return write_int(
-        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
-          return format_uint<4, Char>(it, abs_value, num_digits, upper);
-        });
-  }
-  case presentation_type::bin_lower:
-  case presentation_type::bin_upper: {
-    bool upper = specs.type == presentation_type::bin_upper;
-    if (specs.alt)
-      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
-    int num_digits = count_digits<1>(abs_value);
-    return write_int(out, num_digits, prefix, specs,
-                     [=](reserve_iterator<OutputIt> it) {
-                       return format_uint<1, Char>(it, abs_value, num_digits);
-                     });
-  }
-  case presentation_type::oct: {
-    int num_digits = count_digits<3>(abs_value);
-    // Octal prefix '0' is counted as a digit, so only add it if precision
-    // is not greater than the number of digits.
-    if (specs.alt && specs.precision <= num_digits && abs_value != 0)
-      prefix_append(prefix, '0');
-    return write_int(out, num_digits, prefix, specs,
-                     [=](reserve_iterator<OutputIt> it) {
-                       return format_uint<3, Char>(it, abs_value, num_digits);
-                     });
-  }
-  case presentation_type::chr:
-    return write_char(out, static_cast<Char>(abs_value), specs);
-  default:
-    throw_format_error("invalid format specifier");
-  }
-  return out;
-}
-template <typename Char, typename OutputIt, typename T>
-FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
-    OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs,
-    locale_ref loc) -> OutputIt {
-  return write_int(out, arg, specs, loc);
-}
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_integral<T>::value &&
-                        !std::is_same<T, bool>::value &&
-                        std::is_same<OutputIt, buffer_appender<Char>>::value)>
-FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
-                                    const format_specs<Char>& specs,
-                                    locale_ref loc) -> OutputIt {
-  if (specs.localized && write_loc(out, value, specs, loc)) return out;
-  return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
-                            loc);
-}
-// An inlined version of write used in format string compilation.
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_integral<T>::value &&
-                        !std::is_same<T, bool>::value &&
-                        !std::is_same<OutputIt, buffer_appender<Char>>::value)>
-FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
-                                    const format_specs<Char>& specs,
-                                    locale_ref loc) -> OutputIt {
-  if (specs.localized && write_loc(out, value, specs, loc)) return out;
-  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
-}
-
-// An output iterator that counts the number of objects written to it and
-// discards them.
-class counting_iterator {
- private:
-  size_t count_;
-
- public:
-  using iterator_category = std::output_iterator_tag;
-  using difference_type = std::ptrdiff_t;
-  using pointer = void;
-  using reference = void;
-  FMT_UNCHECKED_ITERATOR(counting_iterator);
-
-  struct value_type {
-    template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
-  };
-
-  FMT_CONSTEXPR counting_iterator() : count_(0) {}
-
-  FMT_CONSTEXPR auto count() const -> size_t { return count_; }
-
-  FMT_CONSTEXPR auto operator++() -> counting_iterator& {
-    ++count_;
-    return *this;
-  }
-  FMT_CONSTEXPR auto operator++(int) -> counting_iterator {
-    auto it = *this;
-    ++*this;
-    return it;
-  }
-
-  FMT_CONSTEXPR friend auto operator+(counting_iterator it, difference_type n)
-      -> counting_iterator {
-    it.count_ += static_cast<size_t>(n);
-    return it;
-  }
-
-  FMT_CONSTEXPR auto operator*() const -> value_type { return {}; }
-};
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
-                         const format_specs<Char>& specs) -> OutputIt {
-  auto data = s.data();
-  auto size = s.size();
-  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
-    size = code_point_index(s, to_unsigned(specs.precision));
-  bool is_debug = specs.type == presentation_type::debug;
-  size_t width = 0;
-  if (specs.width != 0) {
-    if (is_debug)
-      width = write_escaped_string(counting_iterator{}, s).count();
-    else
-      width = compute_width(basic_string_view<Char>(data, size));
-  }
-  return write_padded(out, specs, size, width,
-                      [=](reserve_iterator<OutputIt> it) {
-                        if (is_debug) return write_escaped_string(it, s);
-                        return copy_str<Char>(data, data + size, it);
-                      });
-}
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out,
-                         basic_string_view<type_identity_t<Char>> s,
-                         const format_specs<Char>& specs, locale_ref)
-    -> OutputIt {
-  return write(out, s, specs);
-}
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
-                         const format_specs<Char>& specs, locale_ref)
-    -> OutputIt {
-  if (specs.type == presentation_type::pointer)
-    return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
-  if (!s) throw_format_error("string pointer is null");
-  return write(out, basic_string_view<Char>(s), specs, {});
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_integral<T>::value &&
-                        !std::is_same<T, bool>::value &&
-                        !std::is_same<T, Char>::value)>
-FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
-  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
-  bool negative = is_negative(value);
-  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
-  if (negative) abs_value = ~abs_value + 1;
-  int num_digits = count_digits(abs_value);
-  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
-  auto it = reserve(out, size);
-  if (auto ptr = to_pointer<Char>(it, size)) {
-    if (negative) *ptr++ = static_cast<Char>('-');
-    format_decimal<Char>(ptr, abs_value, num_digits);
-    return out;
-  }
-  if (negative) *it++ = static_cast<Char>('-');
-  it = format_decimal<Char>(it, abs_value, num_digits).end;
-  return base_iterator(out, it);
-}
-
-// DEPRECATED!
-template <typename Char>
-FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
-                               format_specs<Char>& specs) -> const Char* {
-  FMT_ASSERT(begin != end, "");
-  auto align = align::none;
-  auto p = begin + code_point_length(begin);
-  if (end - p <= 0) p = begin;
-  for (;;) {
-    switch (to_ascii(*p)) {
-    case '<':
-      align = align::left;
-      break;
-    case '>':
-      align = align::right;
-      break;
-    case '^':
-      align = align::center;
-      break;
-    }
-    if (align != align::none) {
-      if (p != begin) {
-        auto c = *begin;
-        if (c == '}') return begin;
-        if (c == '{') {
-          throw_format_error("invalid fill character '{'");
-          return begin;
-        }
-        specs.fill = {begin, to_unsigned(p - begin)};
-        begin = p + 1;
-      } else {
-        ++begin;
-      }
-      break;
-    } else if (p == begin) {
-      break;
-    }
-    p = begin;
-  }
-  specs.align = align;
-  return begin;
-}
-
-// A floating-point presentation format.
-enum class float_format : unsigned char {
-  general,  // General: exponent notation or fixed point based on magnitude.
-  exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
-  fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
-  hex
-};
-
-struct float_specs {
-  int precision;
-  float_format format : 8;
-  sign_t sign : 8;
-  bool upper : 1;
-  bool locale : 1;
-  bool binary32 : 1;
-  bool showpoint : 1;
-};
-
-template <typename Char>
-FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs)
-    -> float_specs {
-  auto result = float_specs();
-  result.showpoint = specs.alt;
-  result.locale = specs.localized;
-  switch (specs.type) {
-  case presentation_type::none:
-    result.format = float_format::general;
-    break;
-  case presentation_type::general_upper:
-    result.upper = true;
-    FMT_FALLTHROUGH;
-  case presentation_type::general_lower:
-    result.format = float_format::general;
-    break;
-  case presentation_type::exp_upper:
-    result.upper = true;
-    FMT_FALLTHROUGH;
-  case presentation_type::exp_lower:
-    result.format = float_format::exp;
-    result.showpoint |= specs.precision != 0;
-    break;
-  case presentation_type::fixed_upper:
-    result.upper = true;
-    FMT_FALLTHROUGH;
-  case presentation_type::fixed_lower:
-    result.format = float_format::fixed;
-    result.showpoint |= specs.precision != 0;
-    break;
-  case presentation_type::hexfloat_upper:
-    result.upper = true;
-    FMT_FALLTHROUGH;
-  case presentation_type::hexfloat_lower:
-    result.format = float_format::hex;
-    break;
-  default:
-    throw_format_error("invalid format specifier");
-    break;
-  }
-  return result;
-}
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
-                                     format_specs<Char> specs,
-                                     const float_specs& fspecs) -> OutputIt {
-  auto str =
-      isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
-  constexpr size_t str_size = 3;
-  auto sign = fspecs.sign;
-  auto size = str_size + (sign ? 1 : 0);
-  // Replace '0'-padding with space for non-finite values.
-  const bool is_zero_fill =
-      specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
-  if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
-  return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
-    if (sign) *it++ = detail::sign<Char>(sign);
-    return copy_str<Char>(str, str + str_size, it);
-  });
-}
-
-// A decimal floating-point number significand * pow(10, exp).
-struct big_decimal_fp {
-  const char* significand;
-  int significand_size;
-  int exponent;
-};
-
-constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
-  return f.significand_size;
-}
-template <typename T>
-inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
-  return count_digits(f.significand);
-}
-
-template <typename Char, typename OutputIt>
-constexpr auto write_significand(OutputIt out, const char* significand,
-                                 int significand_size) -> OutputIt {
-  return copy_str<Char>(significand, significand + significand_size, out);
-}
-template <typename Char, typename OutputIt, typename UInt>
-inline auto write_significand(OutputIt out, UInt significand,
-                              int significand_size) -> OutputIt {
-  return format_decimal<Char>(out, significand, significand_size).end;
-}
-template <typename Char, typename OutputIt, typename T, typename Grouping>
-FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
-                                       int significand_size, int exponent,
-                                       const Grouping& grouping) -> OutputIt {
-  if (!grouping.has_separator()) {
-    out = write_significand<Char>(out, significand, significand_size);
-    return detail::fill_n(out, exponent, static_cast<Char>('0'));
-  }
-  auto buffer = memory_buffer();
-  write_significand<char>(appender(buffer), significand, significand_size);
-  detail::fill_n(appender(buffer), exponent, '0');
-  return grouping.apply(out, string_view(buffer.data(), buffer.size()));
-}
-
-template <typename Char, typename UInt,
-          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
-inline auto write_significand(Char* out, UInt significand, int significand_size,
-                              int integral_size, Char decimal_point) -> Char* {
-  if (!decimal_point)
-    return format_decimal(out, significand, significand_size).end;
-  out += significand_size + 1;
-  Char* end = out;
-  int floating_size = significand_size - integral_size;
-  for (int i = floating_size / 2; i > 0; --i) {
-    out -= 2;
-    copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
-    significand /= 100;
-  }
-  if (floating_size % 2 != 0) {
-    *--out = static_cast<Char>('0' + significand % 10);
-    significand /= 10;
-  }
-  *--out = decimal_point;
-  format_decimal(out - integral_size, significand, integral_size);
-  return end;
-}
-
-template <typename OutputIt, typename UInt, typename Char,
-          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
-inline auto write_significand(OutputIt out, UInt significand,
-                              int significand_size, int integral_size,
-                              Char decimal_point) -> OutputIt {
-  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
-  Char buffer[digits10<UInt>() + 2];
-  auto end = write_significand(buffer, significand, significand_size,
-                               integral_size, decimal_point);
-  return detail::copy_str_noinline<Char>(buffer, end, out);
-}
-
-template <typename OutputIt, typename Char>
-FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
-                                     int significand_size, int integral_size,
-                                     Char decimal_point) -> OutputIt {
-  out = detail::copy_str_noinline<Char>(significand,
-                                        significand + integral_size, out);
-  if (!decimal_point) return out;
-  *out++ = decimal_point;
-  return detail::copy_str_noinline<Char>(significand + integral_size,
-                                         significand + significand_size, out);
-}
-
-template <typename OutputIt, typename Char, typename T, typename Grouping>
-FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
-                                       int significand_size, int integral_size,
-                                       Char decimal_point,
-                                       const Grouping& grouping) -> OutputIt {
-  if (!grouping.has_separator()) {
-    return write_significand(out, significand, significand_size, integral_size,
-                             decimal_point);
-  }
-  auto buffer = basic_memory_buffer<Char>();
-  write_significand(buffer_appender<Char>(buffer), significand,
-                    significand_size, integral_size, decimal_point);
-  grouping.apply(
-      out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
-  return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
-                                         buffer.end(), out);
-}
-
-template <typename OutputIt, typename DecimalFP, typename Char,
-          typename Grouping = digit_grouping<Char>>
-FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
-                                    const format_specs<Char>& specs,
-                                    float_specs fspecs, locale_ref loc)
-    -> OutputIt {
-  auto significand = f.significand;
-  int significand_size = get_significand_size(f);
-  const Char zero = static_cast<Char>('0');
-  auto sign = fspecs.sign;
-  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
-  using iterator = reserve_iterator<OutputIt>;
-
-  Char decimal_point =
-      fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
-
-  int output_exp = f.exponent + significand_size - 1;
-  auto use_exp_format = [=]() {
-    if (fspecs.format == float_format::exp) return true;
-    if (fspecs.format != float_format::general) return false;
-    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
-    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
-    const int exp_lower = -4, exp_upper = 16;
-    return output_exp < exp_lower ||
-           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
-  };
-  if (use_exp_format()) {
-    int num_zeros = 0;
-    if (fspecs.showpoint) {
-      num_zeros = fspecs.precision - significand_size;
-      if (num_zeros < 0) num_zeros = 0;
-      size += to_unsigned(num_zeros);
-    } else if (significand_size == 1) {
-      decimal_point = Char();
-    }
-    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
-    int exp_digits = 2;
-    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
-
-    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
-    char exp_char = fspecs.upper ? 'E' : 'e';
-    auto write = [=](iterator it) {
-      if (sign) *it++ = detail::sign<Char>(sign);
-      // Insert a decimal point after the first digit and add an exponent.
-      it = write_significand(it, significand, significand_size, 1,
-                             decimal_point);
-      if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
-      *it++ = static_cast<Char>(exp_char);
-      return write_exponent<Char>(output_exp, it);
-    };
-    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
-                           : base_iterator(out, write(reserve(out, size)));
-  }
-
-  int exp = f.exponent + significand_size;
-  if (f.exponent >= 0) {
-    // 1234e5 -> 123400000[.0+]
-    size += to_unsigned(f.exponent);
-    int num_zeros = fspecs.precision - exp;
-    abort_fuzzing_if(num_zeros > 5000);
-    if (fspecs.showpoint) {
-      ++size;
-      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0;
-      if (num_zeros > 0) size += to_unsigned(num_zeros);
-    }
-    auto grouping = Grouping(loc, fspecs.locale);
-    size += to_unsigned(grouping.count_separators(exp));
-    return write_padded<align::right>(out, specs, size, [&](iterator it) {
-      if (sign) *it++ = detail::sign<Char>(sign);
-      it = write_significand<Char>(it, significand, significand_size,
-                                   f.exponent, grouping);
-      if (!fspecs.showpoint) return it;
-      *it++ = decimal_point;
-      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
-    });
-  } else if (exp > 0) {
-    // 1234e-2 -> 12.34[0+]
-    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
-    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
-    auto grouping = Grouping(loc, fspecs.locale);
-    size += to_unsigned(grouping.count_separators(exp));
-    return write_padded<align::right>(out, specs, size, [&](iterator it) {
-      if (sign) *it++ = detail::sign<Char>(sign);
-      it = write_significand(it, significand, significand_size, exp,
-                             decimal_point, grouping);
-      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
-    });
-  }
-  // 1234e-6 -> 0.001234
-  int num_zeros = -exp;
-  if (significand_size == 0 && fspecs.precision >= 0 &&
-      fspecs.precision < num_zeros) {
-    num_zeros = fspecs.precision;
-  }
-  bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
-  size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
-  return write_padded<align::right>(out, specs, size, [&](iterator it) {
-    if (sign) *it++ = detail::sign<Char>(sign);
-    *it++ = zero;
-    if (!pointy) return it;
-    *it++ = decimal_point;
-    it = detail::fill_n(it, num_zeros, zero);
-    return write_significand<Char>(it, significand, significand_size);
-  });
-}
-
-template <typename Char> class fallback_digit_grouping {
- public:
-  constexpr fallback_digit_grouping(locale_ref, bool) {}
-
-  constexpr auto has_separator() const -> bool { return false; }
-
-  constexpr auto count_separators(int) const -> int { return 0; }
-
-  template <typename Out, typename C>
-  constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
-    return out;
-  }
-};
-
-template <typename OutputIt, typename DecimalFP, typename Char>
-FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
-                                 const format_specs<Char>& specs,
-                                 float_specs fspecs, locale_ref loc)
-    -> OutputIt {
-  if (is_constant_evaluated()) {
-    return do_write_float<OutputIt, DecimalFP, Char,
-                          fallback_digit_grouping<Char>>(out, f, specs, fspecs,
-                                                         loc);
-  } else {
-    return do_write_float(out, f, specs, fspecs, loc);
-  }
-}
-
-template <typename T> constexpr auto isnan(T value) -> bool {
-  return !(value >= value);  // std::isnan doesn't support __float128.
-}
-
-template <typename T, typename Enable = void>
-struct has_isfinite : std::false_type {};
-
-template <typename T>
-struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
-    : std::true_type {};
-
-template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
-                                        has_isfinite<T>::value)>
-FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
-  constexpr T inf = T(std::numeric_limits<double>::infinity());
-  if (is_constant_evaluated())
-    return !detail::isnan(value) && value < inf && value > -inf;
-  return std::isfinite(value);
-}
-template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
-FMT_CONSTEXPR auto isfinite(T value) -> bool {
-  T inf = T(std::numeric_limits<double>::infinity());
-  // std::isfinite doesn't support __float128.
-  return !detail::isnan(value) && value < inf && value > -inf;
-}
-
-template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
-FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
-  if (is_constant_evaluated()) {
-#ifdef __cpp_if_constexpr
-    if constexpr (std::numeric_limits<double>::is_iec559) {
-      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
-      return (bits >> (num_bits<uint64_t>() - 1)) != 0;
-    }
-#endif
-  }
-  return std::signbit(static_cast<double>(value));
-}
-
-inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
-  // Adjust fixed precision by exponent because it is relative to decimal
-  // point.
-  if (exp10 > 0 && precision > max_value<int>() - exp10)
-    FMT_THROW(format_error("number is too big"));
-  precision += exp10;
-}
-
-class bigint {
- private:
-  // A bigint is stored as an array of bigits (big digits), with bigit at index
-  // 0 being the least significant one.
-  using bigit = uint32_t;
-  using double_bigit = uint64_t;
-  enum { bigits_capacity = 32 };
-  basic_memory_buffer<bigit, bigits_capacity> bigits_;
-  int exp_;
-
-  FMT_CONSTEXPR20 auto operator[](int index) const -> bigit {
-    return bigits_[to_unsigned(index)];
-  }
-  FMT_CONSTEXPR20 auto operator[](int index) -> bigit& {
-    return bigits_[to_unsigned(index)];
-  }
-
-  static constexpr const int bigit_bits = num_bits<bigit>();
-
-  friend struct formatter<bigint>;
-
-  FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
-    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
-    (*this)[index] = static_cast<bigit>(result);
-    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
-  }
-
-  FMT_CONSTEXPR20 void remove_leading_zeros() {
-    int num_bigits = static_cast<int>(bigits_.size()) - 1;
-    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
-    bigits_.resize(to_unsigned(num_bigits + 1));
-  }
-
-  // Computes *this -= other assuming aligned bigints and *this >= other.
-  FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
-    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
-    FMT_ASSERT(compare(*this, other) >= 0, "");
-    bigit borrow = 0;
-    int i = other.exp_ - exp_;
-    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
-      subtract_bigits(i, other.bigits_[j], borrow);
-    while (borrow > 0) subtract_bigits(i, 0, borrow);
-    remove_leading_zeros();
-  }
-
-  FMT_CONSTEXPR20 void multiply(uint32_t value) {
-    const double_bigit wide_value = value;
-    bigit carry = 0;
-    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
-      double_bigit result = bigits_[i] * wide_value + carry;
-      bigits_[i] = static_cast<bigit>(result);
-      carry = static_cast<bigit>(result >> bigit_bits);
-    }
-    if (carry != 0) bigits_.push_back(carry);
-  }
-
-  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
-                                         std::is_same<UInt, uint128_t>::value)>
-  FMT_CONSTEXPR20 void multiply(UInt value) {
-    using half_uint =
-        conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
-    const int shift = num_bits<half_uint>() - bigit_bits;
-    const UInt lower = static_cast<half_uint>(value);
-    const UInt upper = value >> num_bits<half_uint>();
-    UInt carry = 0;
-    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
-      UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
-      carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
-              (carry >> bigit_bits);
-      bigits_[i] = static_cast<bigit>(result);
-    }
-    while (carry != 0) {
-      bigits_.push_back(static_cast<bigit>(carry));
-      carry >>= bigit_bits;
-    }
-  }
-
-  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
-                                         std::is_same<UInt, uint128_t>::value)>
-  FMT_CONSTEXPR20 void assign(UInt n) {
-    size_t num_bigits = 0;
-    do {
-      bigits_[num_bigits++] = static_cast<bigit>(n);
-      n >>= bigit_bits;
-    } while (n != 0);
-    bigits_.resize(num_bigits);
-    exp_ = 0;
-  }
-
- public:
-  FMT_CONSTEXPR20 bigint() : exp_(0) {}
-  explicit bigint(uint64_t n) { assign(n); }
-
-  bigint(const bigint&) = delete;
-  void operator=(const bigint&) = delete;
-
-  FMT_CONSTEXPR20 void assign(const bigint& other) {
-    auto size = other.bigits_.size();
-    bigits_.resize(size);
-    auto data = other.bigits_.data();
-    copy_str<bigit>(data, data + size, bigits_.data());
-    exp_ = other.exp_;
-  }
-
-  template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
-    FMT_ASSERT(n > 0, "");
-    assign(uint64_or_128_t<Int>(n));
-  }
-
-  FMT_CONSTEXPR20 auto num_bigits() const -> int {
-    return static_cast<int>(bigits_.size()) + exp_;
-  }
-
-  FMT_NOINLINE FMT_CONSTEXPR20 auto operator<<=(int shift) -> bigint& {
-    FMT_ASSERT(shift >= 0, "");
-    exp_ += shift / bigit_bits;
-    shift %= bigit_bits;
-    if (shift == 0) return *this;
-    bigit carry = 0;
-    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
-      bigit c = bigits_[i] >> (bigit_bits - shift);
-      bigits_[i] = (bigits_[i] << shift) + carry;
-      carry = c;
-    }
-    if (carry != 0) bigits_.push_back(carry);
-    return *this;
-  }
-
-  template <typename Int>
-  FMT_CONSTEXPR20 auto operator*=(Int value) -> bigint& {
-    FMT_ASSERT(value > 0, "");
-    multiply(uint32_or_64_or_128_t<Int>(value));
-    return *this;
-  }
-
-  friend FMT_CONSTEXPR20 auto compare(const bigint& lhs, const bigint& rhs)
-      -> int {
-    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
-    if (num_lhs_bigits != num_rhs_bigits)
-      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
-    int i = static_cast<int>(lhs.bigits_.size()) - 1;
-    int j = static_cast<int>(rhs.bigits_.size()) - 1;
-    int end = i - j;
-    if (end < 0) end = 0;
-    for (; i >= end; --i, --j) {
-      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
-      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
-    }
-    if (i != j) return i > j ? 1 : -1;
-    return 0;
-  }
-
-  // Returns compare(lhs1 + lhs2, rhs).
-  friend FMT_CONSTEXPR20 auto add_compare(const bigint& lhs1,
-                                          const bigint& lhs2, const bigint& rhs)
-      -> int {
-    auto minimum = [](int a, int b) { return a < b ? a : b; };
-    auto maximum = [](int a, int b) { return a > b ? a : b; };
-    int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
-    int num_rhs_bigits = rhs.num_bigits();
-    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
-    if (max_lhs_bigits > num_rhs_bigits) return 1;
-    auto get_bigit = [](const bigint& n, int i) -> bigit {
-      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
-    };
-    double_bigit borrow = 0;
-    int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
-    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
-      double_bigit sum =
-          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
-      bigit rhs_bigit = get_bigit(rhs, i);
-      if (sum > rhs_bigit + borrow) return 1;
-      borrow = rhs_bigit + borrow - sum;
-      if (borrow > 1) return -1;
-      borrow <<= bigit_bits;
-    }
-    return borrow != 0 ? -1 : 0;
-  }
-
-  // Assigns pow(10, exp) to this bigint.
-  FMT_CONSTEXPR20 void assign_pow10(int exp) {
-    FMT_ASSERT(exp >= 0, "");
-    if (exp == 0) return *this = 1;
-    // Find the top bit.
-    int bitmask = 1;
-    while (exp >= bitmask) bitmask <<= 1;
-    bitmask >>= 1;
-    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
-    // repeated squaring and multiplication.
-    *this = 5;
-    bitmask >>= 1;
-    while (bitmask != 0) {
-      square();
-      if ((exp & bitmask) != 0) *this *= 5;
-      bitmask >>= 1;
-    }
-    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
-  }
-
-  FMT_CONSTEXPR20 void square() {
-    int num_bigits = static_cast<int>(bigits_.size());
-    int num_result_bigits = 2 * num_bigits;
-    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
-    bigits_.resize(to_unsigned(num_result_bigits));
-    auto sum = uint128_t();
-    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
-      // Compute bigit at position bigit_index of the result by adding
-      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
-      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
-        // Most terms are multiplied twice which can be optimized in the future.
-        sum += static_cast<double_bigit>(n[i]) * n[j];
-      }
-      (*this)[bigit_index] = static_cast<bigit>(sum);
-      sum >>= num_bits<bigit>();  // Compute the carry.
-    }
-    // Do the same for the top half.
-    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
-         ++bigit_index) {
-      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
-        sum += static_cast<double_bigit>(n[i++]) * n[j--];
-      (*this)[bigit_index] = static_cast<bigit>(sum);
-      sum >>= num_bits<bigit>();
-    }
-    remove_leading_zeros();
-    exp_ *= 2;
-  }
-
-  // If this bigint has a bigger exponent than other, adds trailing zero to make
-  // exponents equal. This simplifies some operations such as subtraction.
-  FMT_CONSTEXPR20 void align(const bigint& other) {
-    int exp_difference = exp_ - other.exp_;
-    if (exp_difference <= 0) return;
-    int num_bigits = static_cast<int>(bigits_.size());
-    bigits_.resize(to_unsigned(num_bigits + exp_difference));
-    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
-      bigits_[j] = bigits_[i];
-    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0u);
-    exp_ -= exp_difference;
-  }
-
-  // Divides this bignum by divisor, assigning the remainder to this and
-  // returning the quotient.
-  FMT_CONSTEXPR20 auto divmod_assign(const bigint& divisor) -> int {
-    FMT_ASSERT(this != &divisor, "");
-    if (compare(*this, divisor) < 0) return 0;
-    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
-    align(divisor);
-    int quotient = 0;
-    do {
-      subtract_aligned(divisor);
-      ++quotient;
-    } while (compare(*this, divisor) >= 0);
-    return quotient;
-  }
-};
-
-// format_dragon flags.
-enum dragon {
-  predecessor_closer = 1,
-  fixup = 2,  // Run fixup to correct exp10 which can be off by one.
-  fixed = 4,
-};
-
-// Formats a floating-point number using a variation of the Fixed-Precision
-// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
-// https://fmt.dev/papers/p372-steele.pdf.
-FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
-                                          unsigned flags, int num_digits,
-                                          buffer<char>& buf, int& exp10) {
-  bigint numerator;    // 2 * R in (FPP)^2.
-  bigint denominator;  // 2 * S in (FPP)^2.
-  // lower and upper are differences between value and corresponding boundaries.
-  bigint lower;             // (M^- in (FPP)^2).
-  bigint upper_store;       // upper's value if different from lower.
-  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
-  // Shift numerator and denominator by an extra bit or two (if lower boundary
-  // is closer) to make lower and upper integers. This eliminates multiplication
-  // by 2 during later computations.
-  bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
-  int shift = is_predecessor_closer ? 2 : 1;
-  if (value.e >= 0) {
-    numerator = value.f;
-    numerator <<= value.e + shift;
-    lower = 1;
-    lower <<= value.e;
-    if (is_predecessor_closer) {
-      upper_store = 1;
-      upper_store <<= value.e + 1;
-      upper = &upper_store;
-    }
-    denominator.assign_pow10(exp10);
-    denominator <<= shift;
-  } else if (exp10 < 0) {
-    numerator.assign_pow10(-exp10);
-    lower.assign(numerator);
-    if (is_predecessor_closer) {
-      upper_store.assign(numerator);
-      upper_store <<= 1;
-      upper = &upper_store;
-    }
-    numerator *= value.f;
-    numerator <<= shift;
-    denominator = 1;
-    denominator <<= shift - value.e;
-  } else {
-    numerator = value.f;
-    numerator <<= shift;
-    denominator.assign_pow10(exp10);
-    denominator <<= shift - value.e;
-    lower = 1;
-    if (is_predecessor_closer) {
-      upper_store = 1ULL << 1;
-      upper = &upper_store;
-    }
-  }
-  int even = static_cast<int>((value.f & 1) == 0);
-  if (!upper) upper = &lower;
-  bool shortest = num_digits < 0;
-  if ((flags & dragon::fixup) != 0) {
-    if (add_compare(numerator, *upper, denominator) + even <= 0) {
-      --exp10;
-      numerator *= 10;
-      if (num_digits < 0) {
-        lower *= 10;
-        if (upper != &lower) *upper *= 10;
-      }
-    }
-    if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
-  }
-  // Invariant: value == (numerator / denominator) * pow(10, exp10).
-  if (shortest) {
-    // Generate the shortest representation.
-    num_digits = 0;
-    char* data = buf.data();
-    for (;;) {
-      int digit = numerator.divmod_assign(denominator);
-      bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
-      // numerator + upper >[=] pow10:
-      bool high = add_compare(numerator, *upper, denominator) + even > 0;
-      data[num_digits++] = static_cast<char>('0' + digit);
-      if (low || high) {
-        if (!low) {
-          ++data[num_digits - 1];
-        } else if (high) {
-          int result = add_compare(numerator, numerator, denominator);
-          // Round half to even.
-          if (result > 0 || (result == 0 && (digit % 2) != 0))
-            ++data[num_digits - 1];
-        }
-        buf.try_resize(to_unsigned(num_digits));
-        exp10 -= num_digits - 1;
-        return;
-      }
-      numerator *= 10;
-      lower *= 10;
-      if (upper != &lower) *upper *= 10;
-    }
-  }
-  // Generate the given number of digits.
-  exp10 -= num_digits - 1;
-  if (num_digits <= 0) {
-    denominator *= 10;
-    auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
-    buf.push_back(digit);
-    return;
-  }
-  buf.try_resize(to_unsigned(num_digits));
-  for (int i = 0; i < num_digits - 1; ++i) {
-    int digit = numerator.divmod_assign(denominator);
-    buf[i] = static_cast<char>('0' + digit);
-    numerator *= 10;
-  }
-  int digit = numerator.divmod_assign(denominator);
-  auto result = add_compare(numerator, numerator, denominator);
-  if (result > 0 || (result == 0 && (digit % 2) != 0)) {
-    if (digit == 9) {
-      const auto overflow = '0' + 10;
-      buf[num_digits - 1] = overflow;
-      // Propagate the carry.
-      for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
-        buf[i] = '0';
-        ++buf[i - 1];
-      }
-      if (buf[0] == overflow) {
-        buf[0] = '1';
-        if ((flags & dragon::fixed) != 0)
-          buf.push_back('0');
-        else
-          ++exp10;
-      }
-      return;
-    }
-    ++digit;
-  }
-  buf[num_digits - 1] = static_cast<char>('0' + digit);
-}
-
-// Formats a floating-point number using the hexfloat format.
-template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
-FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
-                                     float_specs specs, buffer<char>& buf) {
-  // float is passed as double to reduce the number of instantiations and to
-  // simplify implementation.
-  static_assert(!std::is_same<Float, float>::value, "");
-
-  using info = dragonbox::float_info<Float>;
-
-  // Assume Float is in the format [sign][exponent][significand].
-  using carrier_uint = typename info::carrier_uint;
-
-  constexpr auto num_float_significand_bits =
-      detail::num_significand_bits<Float>();
-
-  basic_fp<carrier_uint> f(value);
-  f.e += num_float_significand_bits;
-  if (!has_implicit_bit<Float>()) --f.e;
-
-  constexpr auto num_fraction_bits =
-      num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
-  constexpr auto num_xdigits = (num_fraction_bits + 3) / 4;
-
-  constexpr auto leading_shift = ((num_xdigits - 1) * 4);
-  const auto leading_mask = carrier_uint(0xF) << leading_shift;
-  const auto leading_xdigit =
-      static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
-  if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
-
-  int print_xdigits = num_xdigits - 1;
-  if (precision >= 0 && print_xdigits > precision) {
-    const int shift = ((print_xdigits - precision - 1) * 4);
-    const auto mask = carrier_uint(0xF) << shift;
-    const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
-
-    if (v >= 8) {
-      const auto inc = carrier_uint(1) << (shift + 4);
-      f.f += inc;
-      f.f &= ~(inc - 1);
-    }
-
-    // Check long double overflow
-    if (!has_implicit_bit<Float>()) {
-      const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
-      if ((f.f & implicit_bit) == implicit_bit) {
-        f.f >>= 4;
-        f.e += 4;
-      }
-    }
-
-    print_xdigits = precision;
-  }
-
-  char xdigits[num_bits<carrier_uint>() / 4];
-  detail::fill_n(xdigits, sizeof(xdigits), '0');
-  format_uint<4>(xdigits, f.f, num_xdigits, specs.upper);
-
-  // Remove zero tail
-  while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
-
-  buf.push_back('0');
-  buf.push_back(specs.upper ? 'X' : 'x');
-  buf.push_back(xdigits[0]);
-  if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision)
-    buf.push_back('.');
-  buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
-  for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0');
-
-  buf.push_back(specs.upper ? 'P' : 'p');
-
-  uint32_t abs_e;
-  if (f.e < 0) {
-    buf.push_back('-');
-    abs_e = static_cast<uint32_t>(-f.e);
-  } else {
-    buf.push_back('+');
-    abs_e = static_cast<uint32_t>(f.e);
-  }
-  format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
-}
-
-template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
-FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
-                                     float_specs specs, buffer<char>& buf) {
-  format_hexfloat(static_cast<double>(value), precision, specs, buf);
-}
-
-constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
-  // For checking rounding thresholds.
-  // The kth entry is chosen to be the smallest integer such that the
-  // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
-  // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
-  // These are stored in a string literal because we cannot have static arrays
-  // in constexpr functions and non-static ones are poorly optimized.
-  return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
-         U"\x800001ae\x8000002b"[index];
-}
-
-template <typename Float>
-FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
-                                  buffer<char>& buf) -> int {
-  // float is passed as double to reduce the number of instantiations.
-  static_assert(!std::is_same<Float, float>::value, "");
-  FMT_ASSERT(value >= 0, "value is negative");
-  auto converted_value = convert_float(value);
-
-  const bool fixed = specs.format == float_format::fixed;
-  if (value <= 0) {  // <= instead of == to silence a warning.
-    if (precision <= 0 || !fixed) {
-      buf.push_back('0');
-      return 0;
-    }
-    buf.try_resize(to_unsigned(precision));
-    fill_n(buf.data(), precision, '0');
-    return -precision;
-  }
-
-  int exp = 0;
-  bool use_dragon = true;
-  unsigned dragon_flags = 0;
-  if (!is_fast_float<Float>() || is_constant_evaluated()) {
-    const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
-    using info = dragonbox::float_info<decltype(converted_value)>;
-    const auto f = basic_fp<typename info::carrier_uint>(converted_value);
-    // Compute exp, an approximate power of 10, such that
-    //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
-    // This is based on log10(value) == log2(value) / log2(10) and approximation
-    // of log2(value) by e + num_fraction_bits idea from double-conversion.
-    auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
-    exp = static_cast<int>(e);
-    if (e > exp) ++exp;  // Compute ceil.
-    dragon_flags = dragon::fixup;
-  } else if (precision < 0) {
-    // Use Dragonbox for the shortest format.
-    if (specs.binary32) {
-      auto dec = dragonbox::to_decimal(static_cast<float>(value));
-      write<char>(buffer_appender<char>(buf), dec.significand);
-      return dec.exponent;
-    }
-    auto dec = dragonbox::to_decimal(static_cast<double>(value));
-    write<char>(buffer_appender<char>(buf), dec.significand);
-    return dec.exponent;
-  } else {
-    // Extract significand bits and exponent bits.
-    using info = dragonbox::float_info<double>;
-    auto br = bit_cast<uint64_t>(static_cast<double>(value));
-
-    const uint64_t significand_mask =
-        (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
-    uint64_t significand = (br & significand_mask);
-    int exponent = static_cast<int>((br & exponent_mask<double>()) >>
-                                    num_significand_bits<double>());
-
-    if (exponent != 0) {  // Check if normal.
-      exponent -= exponent_bias<double>() + num_significand_bits<double>();
-      significand |=
-          (static_cast<uint64_t>(1) << num_significand_bits<double>());
-      significand <<= 1;
-    } else {
-      // Normalize subnormal inputs.
-      FMT_ASSERT(significand != 0, "zeros should not appear here");
-      int shift = countl_zero(significand);
-      FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
-                 "");
-      shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
-      exponent = (std::numeric_limits<double>::min_exponent -
-                  num_significand_bits<double>()) -
-                 shift;
-      significand <<= shift;
-    }
-
-    // Compute the first several nonzero decimal significand digits.
-    // We call the number we get the first segment.
-    const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
-    exp = -k;
-    const int beta = exponent + dragonbox::floor_log2_pow10(k);
-    uint64_t first_segment;
-    bool has_more_segments;
-    int digits_in_the_first_segment;
-    {
-      const auto r = dragonbox::umul192_upper128(
-          significand << beta, dragonbox::get_cached_power(k));
-      first_segment = r.high();
-      has_more_segments = r.low() != 0;
-
-      // The first segment can have 18 ~ 19 digits.
-      if (first_segment >= 1000000000000000000ULL) {
-        digits_in_the_first_segment = 19;
-      } else {
-        // When it is of 18-digits, we align it to 19-digits by adding a bogus
-        // zero at the end.
-        digits_in_the_first_segment = 18;
-        first_segment *= 10;
-      }
-    }
-
-    // Compute the actual number of decimal digits to print.
-    if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
-
-    // Use Dragon4 only when there might be not enough digits in the first
-    // segment.
-    if (digits_in_the_first_segment > precision) {
-      use_dragon = false;
-
-      if (precision <= 0) {
-        exp += digits_in_the_first_segment;
-
-        if (precision < 0) {
-          // Nothing to do, since all we have are just leading zeros.
-          buf.try_resize(0);
-        } else {
-          // We may need to round-up.
-          buf.try_resize(1);
-          if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
-              5000000000000000000ULL) {
-            buf[0] = '1';
-          } else {
-            buf[0] = '0';
-          }
-        }
-      }  // precision <= 0
-      else {
-        exp += digits_in_the_first_segment - precision;
-
-        // When precision > 0, we divide the first segment into three
-        // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
-        // in 32-bits which usually allows faster calculation than in
-        // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
-        // division-by-constant for large 64-bit divisors, we do it here
-        // manually. The magic number 7922816251426433760 below is equal to
-        // ceil(2^(64+32) / 10^10).
-        const uint32_t first_subsegment = static_cast<uint32_t>(
-            dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
-            32);
-        const uint64_t second_third_subsegments =
-            first_segment - first_subsegment * 10000000000ULL;
-
-        uint64_t prod;
-        uint32_t digits;
-        bool should_round_up;
-        int number_of_digits_to_print = precision > 9 ? 9 : precision;
-
-        // Print a 9-digits subsegment, either the first or the second.
-        auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
-          int number_of_digits_printed = 0;
-
-          // If we want to print an odd number of digits from the subsegment,
-          if ((number_of_digits_to_print & 1) != 0) {
-            // Convert to 64-bit fixed-point fractional form with 1-digit
-            // integer part. The magic number 720575941 is a good enough
-            // approximation of 2^(32 + 24) / 10^8; see
-            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
-            // for details.
-            prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
-            digits = static_cast<uint32_t>(prod >> 32);
-            *buffer = static_cast<char>('0' + digits);
-            number_of_digits_printed++;
-          }
-          // If we want to print an even number of digits from the
-          // first_subsegment,
-          else {
-            // Convert to 64-bit fixed-point fractional form with 2-digits
-            // integer part. The magic number 450359963 is a good enough
-            // approximation of 2^(32 + 20) / 10^7; see
-            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
-            // for details.
-            prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
-            digits = static_cast<uint32_t>(prod >> 32);
-            copy2(buffer, digits2(digits));
-            number_of_digits_printed += 2;
-          }
-
-          // Print all digit pairs.
-          while (number_of_digits_printed < number_of_digits_to_print) {
-            prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
-            digits = static_cast<uint32_t>(prod >> 32);
-            copy2(buffer + number_of_digits_printed, digits2(digits));
-            number_of_digits_printed += 2;
-          }
-        };
-
-        // Print first subsegment.
-        print_subsegment(first_subsegment, buf.data());
-
-        // Perform rounding if the first subsegment is the last subsegment to
-        // print.
-        if (precision <= 9) {
-          // Rounding inside the subsegment.
-          // We round-up if:
-          //  - either the fractional part is strictly larger than 1/2, or
-          //  - the fractional part is exactly 1/2 and the last digit is odd.
-          // We rely on the following observations:
-          //  - If fractional_part >= threshold, then the fractional part is
-          //    strictly larger than 1/2.
-          //  - If the MSB of fractional_part is set, then the fractional part
-          //    must be at least 1/2.
-          //  - When the MSB of fractional_part is set, either
-          //    second_third_subsegments being nonzero or has_more_segments
-          //    being true means there are further digits not printed, so the
-          //    fractional part is strictly larger than 1/2.
-          if (precision < 9) {
-            uint32_t fractional_part = static_cast<uint32_t>(prod);
-            should_round_up =
-                fractional_part >= fractional_part_rounding_thresholds(
-                                       8 - number_of_digits_to_print) ||
-                ((fractional_part >> 31) &
-                 ((digits & 1) | (second_third_subsegments != 0) |
-                  has_more_segments)) != 0;
-          }
-          // Rounding at the subsegment boundary.
-          // In this case, the fractional part is at least 1/2 if and only if
-          // second_third_subsegments >= 5000000000ULL, and is strictly larger
-          // than 1/2 if we further have either second_third_subsegments >
-          // 5000000000ULL or has_more_segments == true.
-          else {
-            should_round_up = second_third_subsegments > 5000000000ULL ||
-                              (second_third_subsegments == 5000000000ULL &&
-                               ((digits & 1) != 0 || has_more_segments));
-          }
-        }
-        // Otherwise, print the second subsegment.
-        else {
-          // Compilers are not aware of how to leverage the maximum value of
-          // second_third_subsegments to find out a better magic number which
-          // allows us to eliminate an additional shift. 1844674407370955162 =
-          // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
-          const uint32_t second_subsegment =
-              static_cast<uint32_t>(dragonbox::umul128_upper64(
-                  second_third_subsegments, 1844674407370955162ULL));
-          const uint32_t third_subsegment =
-              static_cast<uint32_t>(second_third_subsegments) -
-              second_subsegment * 10;
-
-          number_of_digits_to_print = precision - 9;
-          print_subsegment(second_subsegment, buf.data() + 9);
-
-          // Rounding inside the subsegment.
-          if (precision < 18) {
-            // The condition third_subsegment != 0 implies that the segment was
-            // of 19 digits, so in this case the third segment should be
-            // consisting of a genuine digit from the input.
-            uint32_t fractional_part = static_cast<uint32_t>(prod);
-            should_round_up =
-                fractional_part >= fractional_part_rounding_thresholds(
-                                       8 - number_of_digits_to_print) ||
-                ((fractional_part >> 31) &
-                 ((digits & 1) | (third_subsegment != 0) |
-                  has_more_segments)) != 0;
-          }
-          // Rounding at the subsegment boundary.
-          else {
-            // In this case, the segment must be of 19 digits, thus
-            // the third subsegment should be consisting of a genuine digit from
-            // the input.
-            should_round_up = third_subsegment > 5 ||
-                              (third_subsegment == 5 &&
-                               ((digits & 1) != 0 || has_more_segments));
-          }
-        }
-
-        // Round-up if necessary.
-        if (should_round_up) {
-          ++buf[precision - 1];
-          for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
-            buf[i] = '0';
-            ++buf[i - 1];
-          }
-          if (buf[0] > '9') {
-            buf[0] = '1';
-            if (fixed)
-              buf[precision++] = '0';
-            else
-              ++exp;
-          }
-        }
-        buf.try_resize(to_unsigned(precision));
-      }
-    }  // if (digits_in_the_first_segment > precision)
-    else {
-      // Adjust the exponent for its use in Dragon4.
-      exp += digits_in_the_first_segment - 1;
-    }
-  }
-  if (use_dragon) {
-    auto f = basic_fp<uint128_t>();
-    bool is_predecessor_closer = specs.binary32
-                                     ? f.assign(static_cast<float>(value))
-                                     : f.assign(converted_value);
-    if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
-    if (fixed) dragon_flags |= dragon::fixed;
-    // Limit precision to the maximum possible number of significant digits in
-    // an IEEE754 double because we don't need to generate zeros.
-    const int max_double_digits = 767;
-    if (precision > max_double_digits) precision = max_double_digits;
-    format_dragon(f, dragon_flags, precision, buf, exp);
-  }
-  if (!fixed && !specs.showpoint) {
-    // Remove trailing zeros.
-    auto num_digits = buf.size();
-    while (num_digits > 0 && buf[num_digits - 1] == '0') {
-      --num_digits;
-      ++exp;
-    }
-    buf.try_resize(num_digits);
-  }
-  return exp;
-}
-template <typename Char, typename OutputIt, typename T>
-FMT_CONSTEXPR20 auto write_float(OutputIt out, T value,
-                                 format_specs<Char> specs, locale_ref loc)
-    -> OutputIt {
-  float_specs fspecs = parse_float_type_spec(specs);
-  fspecs.sign = specs.sign;
-  if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
-    fspecs.sign = sign::minus;
-    value = -value;
-  } else if (fspecs.sign == sign::minus) {
-    fspecs.sign = sign::none;
-  }
-
-  if (!detail::isfinite(value))
-    return write_nonfinite(out, detail::isnan(value), specs, fspecs);
-
-  if (specs.align == align::numeric && fspecs.sign) {
-    auto it = reserve(out, 1);
-    *it++ = detail::sign<Char>(fspecs.sign);
-    out = base_iterator(out, it);
-    fspecs.sign = sign::none;
-    if (specs.width != 0) --specs.width;
-  }
-
-  memory_buffer buffer;
-  if (fspecs.format == float_format::hex) {
-    if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
-    format_hexfloat(convert_float(value), specs.precision, fspecs, buffer);
-    return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
-                                     specs);
-  }
-  int precision = specs.precision >= 0 || specs.type == presentation_type::none
-                      ? specs.precision
-                      : 6;
-  if (fspecs.format == float_format::exp) {
-    if (precision == max_value<int>())
-      throw_format_error("number is too big");
-    else
-      ++precision;
-  } else if (fspecs.format != float_format::fixed && precision == 0) {
-    precision = 1;
-  }
-  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
-  int exp = format_float(convert_float(value), precision, fspecs, buffer);
-  fspecs.precision = precision;
-  auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
-  return write_float(out, f, specs, fspecs, loc);
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_floating_point<T>::value)>
-FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs,
-                           locale_ref loc = {}) -> OutputIt {
-  if (const_check(!is_supported_floating_point(value))) return out;
-  return specs.localized && write_loc(out, value, specs, loc)
-             ? out
-             : write_float(out, value, specs, loc);
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_fast_float<T>::value)>
-FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
-  if (is_constant_evaluated()) return write(out, value, format_specs<Char>());
-  if (const_check(!is_supported_floating_point(value))) return out;
-
-  auto fspecs = float_specs();
-  if (detail::signbit(value)) {
-    fspecs.sign = sign::minus;
-    value = -value;
-  }
-
-  constexpr auto specs = format_specs<Char>();
-  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
-  using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
-  floaty_uint mask = exponent_mask<floaty>();
-  if ((bit_cast<floaty_uint>(value) & mask) == mask)
-    return write_nonfinite(out, std::isnan(value), specs, fspecs);
-
-  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
-  return write_float(out, dec, specs, fspecs, {});
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_floating_point<T>::value &&
-                        !is_fast_float<T>::value)>
-inline auto write(OutputIt out, T value) -> OutputIt {
-  return write(out, value, format_specs<Char>());
-}
-
-template <typename Char, typename OutputIt>
-auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {})
-    -> OutputIt {
-  FMT_ASSERT(false, "");
-  return out;
-}
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
-    -> OutputIt {
-  auto it = reserve(out, value.size());
-  it = copy_str_noinline<Char>(value.begin(), value.end(), it);
-  return base_iterator(out, it);
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(is_string<T>::value)>
-constexpr auto write(OutputIt out, const T& value) -> OutputIt {
-  return write<Char>(out, to_string_view(value));
-}
-
-// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
-template <
-    typename Char, typename OutputIt, typename T,
-    bool check =
-        std::is_enum<T>::value && !std::is_same<T, Char>::value &&
-        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
-            type::custom_type,
-    FMT_ENABLE_IF(check)>
-FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
-  return write<Char>(out, static_cast<underlying_t<T>>(value));
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(std::is_same<T, bool>::value)>
-FMT_CONSTEXPR auto write(OutputIt out, T value,
-                         const format_specs<Char>& specs = {}, locale_ref = {})
-    -> OutputIt {
-  return specs.type != presentation_type::none &&
-                 specs.type != presentation_type::string
-             ? write(out, value ? 1 : 0, specs, {})
-             : write_bytes(out, value ? "true" : "false", specs);
-}
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
-  auto it = reserve(out, 1);
-  *it++ = value;
-  return base_iterator(out, it);
-}
-
-template <typename Char, typename OutputIt>
-FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
-    -> OutputIt {
-  if (value) return write(out, basic_string_view<Char>(value));
-  throw_format_error("string pointer is null");
-  return out;
-}
-
-template <typename Char, typename OutputIt, typename T,
-          FMT_ENABLE_IF(std::is_same<T, void>::value)>
-auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {},
-           locale_ref = {}) -> OutputIt {
-  return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
-}
-
-// A write overload that handles implicit conversions.
-template <typename Char, typename OutputIt, typename T,
-          typename Context = basic_format_context<OutputIt, Char>>
-FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
-    std::is_class<T>::value && !is_string<T>::value &&
-        !is_floating_point<T>::value && !std::is_same<T, Char>::value &&
-        !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map(
-                             value))>>::value,
-    OutputIt> {
-  return write<Char>(out, arg_mapper<Context>().map(value));
-}
-
-template <typename Char, typename OutputIt, typename T,
-          typename Context = basic_format_context<OutputIt, Char>>
-FMT_CONSTEXPR auto write(OutputIt out, const T& value)
-    -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
-                   OutputIt> {
-  auto formatter = typename Context::template formatter_type<T>();
-  auto parse_ctx = typename Context::parse_context_type({});
-  formatter.parse(parse_ctx);
-  auto ctx = Context(out, {}, {});
-  return formatter.format(value, ctx);
-}
-
-// An argument visitor that formats the argument and writes it via the output
-// iterator. It's a class and not a generic lambda for compatibility with C++11.
-template <typename Char> struct default_arg_formatter {
-  using iterator = buffer_appender<Char>;
-  using context = buffer_context<Char>;
-
-  iterator out;
-  basic_format_args<context> args;
-  locale_ref loc;
-
-  template <typename T> auto operator()(T value) -> iterator {
-    return write<Char>(out, value);
-  }
-  auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
-    basic_format_parse_context<Char> parse_ctx({});
-    context format_ctx(out, args, loc);
-    h.format(parse_ctx, format_ctx);
-    return format_ctx.out();
-  }
-};
-
-template <typename Char> struct arg_formatter {
-  using iterator = buffer_appender<Char>;
-  using context = buffer_context<Char>;
-
-  iterator out;
-  const format_specs<Char>& specs;
-  locale_ref locale;
-
-  template <typename T>
-  FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
-    return detail::write(out, value, specs, locale);
-  }
-  auto operator()(typename basic_format_arg<context>::handle) -> iterator {
-    // User-defined types are handled separately because they require access
-    // to the parse context.
-    return out;
-  }
-};
-
-struct width_checker {
-  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
-  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
-    if (is_negative(value)) throw_format_error("negative width");
-    return static_cast<unsigned long long>(value);
-  }
-
-  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
-  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
-    throw_format_error("width is not integer");
-    return 0;
-  }
-};
-
-struct precision_checker {
-  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
-  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
-    if (is_negative(value)) throw_format_error("negative precision");
-    return static_cast<unsigned long long>(value);
-  }
-
-  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
-  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
-    throw_format_error("precision is not integer");
-    return 0;
-  }
-};
-
-template <typename Handler, typename FormatArg>
-FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg) -> int {
-  unsigned long long value = visit_format_arg(Handler(), arg);
-  if (value > to_unsigned(max_value<int>()))
-    throw_format_error("number is too big");
-  return static_cast<int>(value);
-}
-
-template <typename Context, typename ID>
-FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) {
-  auto arg = ctx.arg(id);
-  if (!arg) ctx.on_error("argument not found");
-  return arg;
-}
-
-template <typename Handler, typename Context>
-FMT_CONSTEXPR void handle_dynamic_spec(int& value,
-                                       arg_ref<typename Context::char_type> ref,
-                                       Context& ctx) {
-  switch (ref.kind) {
-  case arg_id_kind::none:
-    break;
-  case arg_id_kind::index:
-    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index));
-    break;
-  case arg_id_kind::name:
-    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name));
-    break;
-  }
-}
-
-#if FMT_USE_USER_DEFINED_LITERALS
-#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
-template <typename T, typename Char, size_t N,
-          fmt::detail_exported::fixed_string<Char, N> Str>
-struct statically_named_arg : view {
-  static constexpr auto name = Str.data;
-
-  const T& value;
-  statically_named_arg(const T& v) : value(v) {}
-};
-
-template <typename T, typename Char, size_t N,
-          fmt::detail_exported::fixed_string<Char, N> Str>
-struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
-
-template <typename T, typename Char, size_t N,
-          fmt::detail_exported::fixed_string<Char, N> Str>
-struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
-    : std::true_type {};
-
-template <typename Char, size_t N,
-          fmt::detail_exported::fixed_string<Char, N> Str>
-struct udl_arg {
-  template <typename T> auto operator=(T&& value) const {
-    return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
-  }
-};
-#  else
-template <typename Char> struct udl_arg {
-  const Char* str;
-
-  template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
-    return {str, std::forward<T>(value)};
-  }
-};
-#  endif
-#endif  // FMT_USE_USER_DEFINED_LITERALS
-
-template <typename Locale, typename Char>
-auto vformat(const Locale& loc, basic_string_view<Char> fmt,
-             basic_format_args<buffer_context<type_identity_t<Char>>> args)
-    -> std::basic_string<Char> {
-  auto buf = basic_memory_buffer<Char>();
-  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
-  return {buf.data(), buf.size()};
-}
-
-using format_func = void (*)(detail::buffer<char>&, int, const char*);
-
-FMT_API void format_error_code(buffer<char>& out, int error_code,
-                               string_view message) noexcept;
-
-FMT_API void report_error(format_func func, int error_code,
-                          const char* message) noexcept;
-}  // namespace detail
-
-FMT_API auto vsystem_error(int error_code, string_view format_str,
-                           format_args args) -> std::system_error;
-
-/**
-  \rst
-  Constructs :class:`std::system_error` with a message formatted with
-  ``fmt::format(fmt, args...)``.
-  *error_code* is a system error code as given by ``errno``.
-
-  **Example**::
-
-    // This throws std::system_error with the description
-    //   cannot open file 'madeup': No such file or directory
-    // or similar (system message may vary).
-    const char* filename = "madeup";
-    std::FILE* file = std::fopen(filename, "r");
-    if (!file)
-      throw fmt::system_error(errno, "cannot open file '{}'", filename);
-  \endrst
- */
-template <typename... T>
-auto system_error(int error_code, format_string<T...> fmt, T&&... args)
-    -> std::system_error {
-  return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
-}
-
-/**
-  \rst
-  Formats an error message for an error returned by an operating system or a
-  language runtime, for example a file opening error, and writes it to *out*.
-  The format is the same as the one used by ``std::system_error(ec, message)``
-  where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
-  It is implementation-defined but normally looks like:
-
-  .. parsed-literal::
-     *<message>*: *<system-message>*
-
-  where *<message>* is the passed message and *<system-message>* is the system
-  message corresponding to the error code.
-  *error_code* is a system error code as given by ``errno``.
-  \endrst
- */
-FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
-                                 const char* message) noexcept;
-
-// Reports a system error without throwing an exception.
-// Can be used to report errors from destructors.
-FMT_API void report_system_error(int error_code, const char* message) noexcept;
-
-/** Fast integer formatter. */
-class format_int {
- private:
-  // Buffer should be large enough to hold all digits (digits10 + 1),
-  // a sign and a null character.
-  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
-  mutable char buffer_[buffer_size];
-  char* str_;
-
-  template <typename UInt> auto format_unsigned(UInt value) -> char* {
-    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
-    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
-  }
-
-  template <typename Int> auto format_signed(Int value) -> char* {
-    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
-    bool negative = value < 0;
-    if (negative) abs_value = 0 - abs_value;
-    auto begin = format_unsigned(abs_value);
-    if (negative) *--begin = '-';
-    return begin;
-  }
-
- public:
-  explicit format_int(int value) : str_(format_signed(value)) {}
-  explicit format_int(long value) : str_(format_signed(value)) {}
-  explicit format_int(long long value) : str_(format_signed(value)) {}
-  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
-  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
-  explicit format_int(unsigned long long value)
-      : str_(format_unsigned(value)) {}
-
-  /** Returns the number of characters written to the output buffer. */
-  auto size() const -> size_t {
-    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
-  }
-
-  /**
-    Returns a pointer to the output buffer content. No terminating null
-    character is appended.
-   */
-  auto data() const -> const char* { return str_; }
-
-  /**
-    Returns a pointer to the output buffer content with terminating null
-    character appended.
-   */
-  auto c_str() const -> const char* {
-    buffer_[buffer_size - 1] = '\0';
-    return str_;
-  }
-
-  /**
-    \rst
-    Returns the content of the output buffer as an ``std::string``.
-    \endrst
-   */
-  auto str() const -> std::string { return std::string(str_, size()); }
-};
-
-template <typename T, typename Char>
-struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
-    : formatter<detail::format_as_t<T>, Char> {
-  template <typename FormatContext>
-  auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
-    using base = formatter<detail::format_as_t<T>, Char>;
-    return base::format(format_as(value), ctx);
-  }
-};
-
-#define FMT_FORMAT_AS(Type, Base) \
-  template <typename Char>        \
-  struct formatter<Type, Char> : formatter<Base, Char> {}
-
-FMT_FORMAT_AS(signed char, int);
-FMT_FORMAT_AS(unsigned char, unsigned);
-FMT_FORMAT_AS(short, int);
-FMT_FORMAT_AS(unsigned short, unsigned);
-FMT_FORMAT_AS(long, detail::long_type);
-FMT_FORMAT_AS(unsigned long, detail::ulong_type);
-FMT_FORMAT_AS(Char*, const Char*);
-FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
-FMT_FORMAT_AS(std::nullptr_t, const void*);
-FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
-FMT_FORMAT_AS(void*, const void*);
-
-template <typename Char, size_t N>
-struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
-
-/**
-  \rst
-  Converts ``p`` to ``const void*`` for pointer formatting.
-
-  **Example**::
-
-    auto s = fmt::format("{}", fmt::ptr(p));
-  \endrst
- */
-template <typename T> auto ptr(T p) -> const void* {
-  static_assert(std::is_pointer<T>::value, "");
-  return detail::bit_cast<const void*>(p);
-}
-template <typename T, typename Deleter>
-auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* {
-  return p.get();
-}
-template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
-  return p.get();
-}
-
-/**
-  \rst
-  Converts ``e`` to the underlying type.
-
-  **Example**::
-
-    enum class color { red, green, blue };
-    auto s = fmt::format("{}", fmt::underlying(color::red));
-  \endrst
- */
-template <typename Enum>
-constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
-  return static_cast<underlying_t<Enum>>(e);
-}
-
-namespace enums {
-template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
-constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
-  return static_cast<underlying_t<Enum>>(e);
-}
-}  // namespace enums
-
-class bytes {
- private:
-  string_view data_;
-  friend struct formatter<bytes>;
-
- public:
-  explicit bytes(string_view data) : data_(data) {}
-};
-
-template <> struct formatter<bytes> {
- private:
-  detail::dynamic_format_specs<> specs_;
-
- public:
-  template <typename ParseContext>
-  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
-    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
-                              detail::type::string_type);
-  }
-
-  template <typename FormatContext>
-  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
-    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
-                                                       specs_.width_ref, ctx);
-    detail::handle_dynamic_spec<detail::precision_checker>(
-        specs_.precision, specs_.precision_ref, ctx);
-    return detail::write_bytes(ctx.out(), b.data_, specs_);
-  }
-};
-
-// group_digits_view is not derived from view because it copies the argument.
-template <typename T> struct group_digits_view {
-  T value;
-};
-
-/**
-  \rst
-  Returns a view that formats an integer value using ',' as a locale-independent
-  thousands separator.
-
-  **Example**::
-
-    fmt::print("{}", fmt::group_digits(12345));
-    // Output: "12,345"
-  \endrst
- */
-template <typename T> auto group_digits(T value) -> group_digits_view<T> {
-  return {value};
-}
-
-template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
- private:
-  detail::dynamic_format_specs<> specs_;
-
- public:
-  template <typename ParseContext>
-  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
-    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
-                              detail::type::int_type);
-  }
-
-  template <typename FormatContext>
-  auto format(group_digits_view<T> t, FormatContext& ctx)
-      -> decltype(ctx.out()) {
-    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
-                                                       specs_.width_ref, ctx);
-    detail::handle_dynamic_spec<detail::precision_checker>(
-        specs_.precision, specs_.precision_ref, ctx);
-    return detail::write_int(
-        ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
-        detail::digit_grouping<char>("\3", ","));
-  }
-};
-
-template <typename T> struct nested_view {
-  const formatter<T>* fmt;
-  const T* value;
-};
-
-template <typename T> struct formatter<nested_view<T>> {
-  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
-    return ctx.begin();
-  }
-  auto format(nested_view<T> view, format_context& ctx) const
-      -> decltype(ctx.out()) {
-    return view.fmt->format(*view.value, ctx);
-  }
-};
-
-template <typename T> struct nested_formatter {
- private:
-  int width_;
-  detail::fill_t<char> fill_;
-  align_t align_ : 4;
-  formatter<T> formatter_;
-
- public:
-  constexpr nested_formatter() : width_(0), align_(align_t::none) {}
-
-  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
-    auto specs = detail::dynamic_format_specs<char>();
-    auto it = parse_format_specs(ctx.begin(), ctx.end(), specs, ctx,
-                                 detail::type::none_type);
-    width_ = specs.width;
-    fill_ = specs.fill;
-    align_ = specs.align;
-    ctx.advance_to(it);
-    return formatter_.parse(ctx);
-  }
-
-  template <typename F>
-  auto write_padded(format_context& ctx, F write) const -> decltype(ctx.out()) {
-    if (width_ == 0) return write(ctx.out());
-    auto buf = memory_buffer();
-    write(std::back_inserter(buf));
-    auto specs = format_specs<>();
-    specs.width = width_;
-    specs.fill = fill_;
-    specs.align = align_;
-    return detail::write(ctx.out(), string_view(buf.data(), buf.size()), specs);
-  }
-
-  auto nested(const T& value) const -> nested_view<T> {
-    return nested_view<T>{&formatter_, &value};
-  }
-};
-
-// DEPRECATED! join_view will be moved to ranges.h.
-template <typename It, typename Sentinel, typename Char = char>
-struct join_view : detail::view {
-  It begin;
-  Sentinel end;
-  basic_string_view<Char> sep;
-
-  join_view(It b, Sentinel e, basic_string_view<Char> s)
-      : begin(b), end(e), sep(s) {}
-};
-
-template <typename It, typename Sentinel, typename Char>
-struct formatter<join_view<It, Sentinel, Char>, Char> {
- private:
-  using value_type =
-#ifdef __cpp_lib_ranges
-      std::iter_value_t<It>;
-#else
-      typename std::iterator_traits<It>::value_type;
-#endif
-  formatter<remove_cvref_t<value_type>, Char> value_formatter_;
-
- public:
-  template <typename ParseContext>
-  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
-    return value_formatter_.parse(ctx);
-  }
-
-  template <typename FormatContext>
-  auto format(const join_view<It, Sentinel, Char>& value,
-              FormatContext& ctx) const -> decltype(ctx.out()) {
-    auto it = value.begin;
-    auto out = ctx.out();
-    if (it != value.end) {
-      out = value_formatter_.format(*it, ctx);
-      ++it;
-      while (it != value.end) {
-        out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
-        ctx.advance_to(out);
-        out = value_formatter_.format(*it, ctx);
-        ++it;
-      }
-    }
-    return out;
-  }
-};
-
-/**
-  Returns a view that formats the iterator range `[begin, end)` with elements
-  separated by `sep`.
- */
-template <typename It, typename Sentinel>
-auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
-  return {begin, end, sep};
-}
-
-/**
-  \rst
-  Returns a view that formats `range` with elements separated by `sep`.
-
-  **Example**::
-
-    std::vector<int> v = {1, 2, 3};
-    fmt::print("{}", fmt::join(v, ", "));
-    // Output: "1, 2, 3"
-
-  ``fmt::join`` applies passed format specifiers to the range elements::
-
-    fmt::print("{:02}", fmt::join(v, ", "));
-    // Output: "01, 02, 03"
-  \endrst
- */
-template <typename Range>
-auto join(Range&& range, string_view sep)
-    -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
-  return join(std::begin(range), std::end(range), sep);
-}
-
-/**
-  \rst
-  Converts *value* to ``std::string`` using the default format for type *T*.
-
-  **Example**::
-
-    #include <fmt/format.h>
-
-    std::string answer = fmt::to_string(42);
-  \endrst
- */
-template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
-                                    !detail::has_format_as<T>::value)>
-inline auto to_string(const T& value) -> std::string {
-  auto buffer = memory_buffer();
-  detail::write<char>(appender(buffer), value);
-  return {buffer.data(), buffer.size()};
-}
-
-template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
-FMT_NODISCARD inline auto to_string(T value) -> std::string {
-  // The buffer should be large enough to store the number including the sign
-  // or "false" for bool.
-  constexpr int max_size = detail::digits10<T>() + 2;
-  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
-  char* begin = buffer;
-  return std::string(begin, detail::write<char>(begin, value));
-}
-
-template <typename Char, size_t SIZE>
-FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
-    -> std::basic_string<Char> {
-  auto size = buf.size();
-  detail::assume(size < std::basic_string<Char>().max_size());
-  return std::basic_string<Char>(buf.data(), size);
-}
-
-template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
-                                    detail::has_format_as<T>::value)>
-inline auto to_string(const T& value) -> std::string {
-  return to_string(format_as(value));
-}
-
-FMT_END_EXPORT
-
-namespace detail {
-
-template <typename Char>
-void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
-                typename vformat_args<Char>::type args, locale_ref loc) {
-  auto out = buffer_appender<Char>(buf);
-  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
-    auto arg = args.get(0);
-    if (!arg) throw_format_error("argument not found");
-    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
-    return;
-  }
-
-  struct format_handler : error_handler {
-    basic_format_parse_context<Char> parse_context;
-    buffer_context<Char> context;
-
-    format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
-                   basic_format_args<buffer_context<Char>> p_args,
-                   locale_ref p_loc)
-        : parse_context(str), context(p_out, p_args, p_loc) {}
-
-    void on_text(const Char* begin, const Char* end) {
-      auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
-      context.advance_to(write<Char>(context.out(), text));
-    }
-
-    FMT_CONSTEXPR auto on_arg_id() -> int {
-      return parse_context.next_arg_id();
-    }
-    FMT_CONSTEXPR auto on_arg_id(int id) -> int {
-      return parse_context.check_arg_id(id), id;
-    }
-    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
-      int arg_id = context.arg_id(id);
-      if (arg_id < 0) throw_format_error("argument not found");
-      return arg_id;
-    }
-
-    FMT_INLINE void on_replacement_field(int id, const Char*) {
-      auto arg = get_arg(context, id);
-      context.advance_to(visit_format_arg(
-          default_arg_formatter<Char>{context.out(), context.args(),
-                                      context.locale()},
-          arg));
-    }
-
-    auto on_format_specs(int id, const Char* begin, const Char* end)
-        -> const Char* {
-      auto arg = get_arg(context, id);
-      // Not using a visitor for custom types gives better codegen.
-      if (arg.format_custom(begin, parse_context, context))
-        return parse_context.begin();
-      auto specs = detail::dynamic_format_specs<Char>();
-      begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
-      detail::handle_dynamic_spec<detail::width_checker>(
-          specs.width, specs.width_ref, context);
-      detail::handle_dynamic_spec<detail::precision_checker>(
-          specs.precision, specs.precision_ref, context);
-      if (begin == end || *begin != '}')
-        throw_format_error("missing '}' in format string");
-      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
-      context.advance_to(visit_format_arg(f, arg));
-      return begin;
-    }
-  };
-  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
-}
-
-FMT_BEGIN_EXPORT
-
-#ifndef FMT_HEADER_ONLY
-extern template FMT_API void vformat_to(buffer<char>&, string_view,
-                                        typename vformat_args<>::type,
-                                        locale_ref);
-extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
-    -> thousands_sep_result<char>;
-extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
-    -> thousands_sep_result<wchar_t>;
-extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
-extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
-#endif  // FMT_HEADER_ONLY
-
-}  // namespace detail
-
-#if FMT_USE_USER_DEFINED_LITERALS
-inline namespace literals {
-/**
-  \rst
-  User-defined literal equivalent of :func:`fmt::arg`.
-
-  **Example**::
-
-    using namespace fmt::literals;
-    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
-  \endrst
- */
-#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
-template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
-  using char_t = remove_cvref_t<decltype(Str.data[0])>;
-  return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
-}
-#  else
-constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
-  return {s};
-}
-#  endif
-}  // namespace literals
-#endif  // FMT_USE_USER_DEFINED_LITERALS
-
-template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
-inline auto vformat(const Locale& loc, string_view fmt, format_args args)
-    -> std::string {
-  return detail::vformat(loc, fmt, args);
-}
-
-template <typename Locale, typename... T,
-          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
-inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
-    -> std::string {
-  return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...));
-}
-
-template <typename OutputIt, typename Locale,
-          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
-                            detail::is_locale<Locale>::value)>
-auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
-                format_args args) -> OutputIt {
-  using detail::get_buffer;
-  auto&& buf = get_buffer<char>(out);
-  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
-  return detail::get_iterator(buf, out);
-}
-
-template <typename OutputIt, typename Locale, typename... T,
-          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
-                            detail::is_locale<Locale>::value)>
-FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
-                          format_string<T...> fmt, T&&... args) -> OutputIt {
-  return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
-}
-
-template <typename Locale, typename... T,
-          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
-FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc,
-                                             format_string<T...> fmt,
-                                             T&&... args) -> size_t {
-  auto buf = detail::counting_buffer<>();
-  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...),
-                           detail::locale_ref(loc));
-  return buf.count();
-}
-
-FMT_END_EXPORT
-
-template <typename T, typename Char>
-template <typename FormatContext>
-FMT_CONSTEXPR FMT_INLINE auto
-formatter<T, Char,
-          enable_if_t<detail::type_constant<T, Char>::value !=
-                      detail::type::custom_type>>::format(const T& val,
-                                                          FormatContext& ctx)
-    const -> decltype(ctx.out()) {
-  if (specs_.width_ref.kind == detail::arg_id_kind::none &&
-      specs_.precision_ref.kind == detail::arg_id_kind::none) {
-    return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
-  }
-  auto specs = specs_;
-  detail::handle_dynamic_spec<detail::width_checker>(specs.width,
-                                                     specs.width_ref, ctx);
-  detail::handle_dynamic_spec<detail::precision_checker>(
-      specs.precision, specs.precision_ref, ctx);
-  return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
-}
-
-FMT_END_NAMESPACE
-
-#ifdef FMT_HEADER_ONLY
-#  define FMT_FUNC inline
-#  include "format-inl.h"
-#else
-#  define FMT_FUNC
-#endif
-
-#endif  // FMT_FORMAT_H_