]> gitweb.factorcode.org Git - factor.git/blobdiff - vm/free_list.hpp
VM: merge of the free_list and free_list_allocator classes
[factor.git] / vm / free_list.hpp
index 4fdf4491471c829d2e8cae13518f3c7d4beffc91..a93084315b673bf200bbe3a3295b83738b0a58f2 100644 (file)
@@ -26,23 +26,6 @@ struct block_size_compare {
   }
 };
 
-typedef std::multiset<free_heap_block*, block_size_compare> large_block_set;
-
-struct free_list {
-  std::vector<free_heap_block*> small_blocks[free_list_count];
-  large_block_set large_blocks;
-  cell free_block_count;
-  cell free_space;
-
-  void clear_free_list();
-  void initial_free_list(cell start, cell end, cell occupied);
-  void add_to_free_list(free_heap_block* block);
-  free_heap_block* find_free_block(cell size);
-  free_heap_block* split_free_block(free_heap_block* block, cell size);
-  bool can_allot_p(cell size);
-  cell largest_free_block();
-};
-
 struct allocator_room {
   cell size;
   cell occupied_space;
@@ -52,44 +35,86 @@ struct allocator_room {
 };
 
 template <typename Block> struct free_list_allocator {
-  cell size;
+  // Region of memory managed by this free list allocator.
   cell start;
   cell end;
-  free_list free_blocks;
+  cell size;
+
+  // Stores the free blocks
+  std::vector<free_heap_block*> small_blocks[free_list_count];
+  std::multiset<free_heap_block*, block_size_compare> large_blocks;
+  cell free_block_count;
+  cell free_space;
+
   mark_bits state;
 
+  // Initializing & freeing
   free_list_allocator(cell size, cell start);
   void initial_free_list(cell occupied);
+  void clear_free_list();
+  void add_to_free_list(free_heap_block* block);
+  void free(Block* block);
+
+  // Allocating
+  free_heap_block* find_free_block(cell size);
+  free_heap_block* split_free_block(free_heap_block* block, cell size);
+  Block* allot(cell size);
+
+  // Data
   bool contains_p(Block* block);
   bool can_allot_p(cell size);
-  Block* allot(cell size);
-  void free(Block* block);
   cell occupied_space();
-  cell free_space();
   cell largest_free_block();
-  cell free_block_count();
+  allocator_room as_allocator_room();
+
+  // Iteration
   void sweep();
   template <typename Iterator> void sweep(Iterator& iter);
   template <typename Iterator, typename Fixup>
   void compact(Iterator& iter, Fixup fixup, const Block** finger);
   template <typename Iterator, typename Fixup>
   void iterate(Iterator& iter, Fixup fixup);
-  template <typename Iterator> void iterate(Iterator& iter);
-  allocator_room as_allocator_room();
 };
 
 template <typename Block>
-free_list_allocator<Block>::free_list_allocator(cell size, cell start)
-    : size(size),
-      start(start),
-      end(start + size),
-      state(mark_bits(size, start)) {
-  initial_free_list(0);
+void free_list_allocator<Block>::clear_free_list() {
+  for (cell i = 0; i < free_list_count; i++)
+    small_blocks[i].clear();
+  large_blocks.clear();
+  free_block_count = 0;
+  free_space = 0;
+}
+
+template <typename Block>
+void free_list_allocator<Block>::add_to_free_list(free_heap_block* block) {
+  cell size = block->size();
+
+  free_block_count++;
+  free_space += size;
+
+  if (size < free_list_count * data_alignment)
+    small_blocks[size / data_alignment].push_back(block);
+  else
+    large_blocks.insert(block);
 }
 
 template <typename Block>
 void free_list_allocator<Block>::initial_free_list(cell occupied) {
-  free_blocks.initial_free_list(start, end, occupied);
+  clear_free_list();
+  if (occupied != end - start) {
+    free_heap_block* last_block = (free_heap_block*)(start + occupied);
+    last_block->make_free(end - (cell)last_block);
+    add_to_free_list(last_block);
+  }
+}
+
+template <typename Block>
+free_list_allocator<Block>::free_list_allocator(cell size, cell start)
+    : start(start),
+      end(start + size),
+      size(size),
+      state(mark_bits(size, start)) {
+  initial_free_list(0);
 }
 
 template <typename Block>
@@ -99,47 +124,121 @@ bool free_list_allocator<Block>::contains_p(Block* block) {
 
 template <typename Block>
 bool free_list_allocator<Block>::can_allot_p(cell size) {
-  return free_blocks.can_allot_p(size);
+  return largest_free_block() >= std::max(size, allocation_page_size);
+}
+
+template <typename Block>
+free_heap_block* free_list_allocator<Block>::split_free_block(
+    free_heap_block* block,
+    cell size) {
+  if (block->size() != size) {
+    // split the block in two
+    free_heap_block* split = (free_heap_block*)((cell)block + size);
+    split->make_free(block->size() - size);
+    block->make_free(size);
+    add_to_free_list(split);
+  }
+
+  return block;
 }
 
-template <typename Block> Block* free_list_allocator<Block>::allot(cell size) {
+template <typename Block>
+free_heap_block* free_list_allocator<Block>::find_free_block(cell size) {
+  // Check small free lists
+  cell bucket = size / data_alignment;
+  if (bucket < free_list_count) {
+    std::vector<free_heap_block*>& blocks = small_blocks[bucket];
+    if (blocks.size() == 0) {
+      // Round up to a multiple of 'size'
+      cell large_block_size = ((allocation_page_size + size - 1) / size) * size;
+
+      // Allocate a block this big
+      free_heap_block* large_block = find_free_block(large_block_size);
+      if (!large_block)
+        return NULL;
+
+      large_block = split_free_block(large_block, large_block_size);
+
+      // Split it up into pieces and add each piece back to the free list
+      for (cell offset = 0; offset < large_block_size; offset += size) {
+        free_heap_block* small_block = large_block;
+        large_block = (free_heap_block*)((cell)large_block + size);
+        small_block->make_free(size);
+        add_to_free_list(small_block);
+      }
+    }
+
+    free_heap_block* block = blocks.back();
+    blocks.pop_back();
+
+    free_block_count--;
+    free_space -= block->size();
+
+    return block;
+  } else {
+    // Check large free list
+    free_heap_block key;
+    key.make_free(size);
+    auto iter = large_blocks.lower_bound(&key);
+    auto end = large_blocks.end();
+
+    if (iter != end) {
+      free_heap_block* block = *iter;
+      large_blocks.erase(iter);
+
+      free_block_count--;
+      free_space -= block->size();
+
+      return block;
+    }
+
+    return NULL;
+  }
+}
+
+
+template <typename Block>
+Block* free_list_allocator<Block>::allot(cell size) {
   size = align(size, data_alignment);
 
-  free_heap_block* block = free_blocks.find_free_block(size);
+  free_heap_block* block = find_free_block(size);
   if (block) {
-    block = free_blocks.split_free_block(block, size);
+    block = split_free_block(block, size);
     return (Block*)block;
   }
   return NULL;
 }
 
-template <typename Block> void free_list_allocator<Block>::free(Block* block) {
+template <typename Block>
+void free_list_allocator<Block>::free(Block* block) {
   free_heap_block* free_block = (free_heap_block*)block;
   free_block->make_free(block->size());
-  free_blocks.add_to_free_list(free_block);
+  add_to_free_list(free_block);
 }
 
-template <typename Block> cell free_list_allocator<Block>::free_space() {
-  return free_blocks.free_space;
-}
-
-template <typename Block> cell free_list_allocator<Block>::occupied_space() {
-  return size - free_blocks.free_space;
+template <typename Block>
+cell free_list_allocator<Block>::occupied_space() {
+  return size - free_space;
 }
 
 template <typename Block>
 cell free_list_allocator<Block>::largest_free_block() {
-  return free_blocks.largest_free_block();
-}
-
-template <typename Block> cell free_list_allocator<Block>::free_block_count() {
-  return free_blocks.free_block_count;
+  if (large_blocks.size()) {
+    auto last = large_blocks.rbegin();
+    return (*last)->size();
+  } else {
+    for (int i = free_list_count - 1; i >= 0; i--) {
+      if (small_blocks[i].size())
+        return small_blocks[i].back()->size();
+    }
+    return 0;
+  }
 }
 
 template <typename Block>
 template <typename Iterator>
 void free_list_allocator<Block>::sweep(Iterator& iter) {
-  free_blocks.clear_free_list();
+  clear_free_list();
 
   cell start = this->start;
   cell end = this->end;
@@ -155,7 +254,7 @@ void free_list_allocator<Block>::sweep(Iterator& iter) {
 
       free_heap_block* free_block = (free_heap_block*)start;
       free_block->make_free(size);
-      free_blocks.add_to_free_list(free_block);
+      add_to_free_list(free_block);
       iter((Block*)start, size);
 
       start = start + size;
@@ -188,7 +287,7 @@ void free_list_allocator<Block>::compact(Iterator& iter, Fixup fixup,
 
   // Now update the free list; there will be a single free block at
   // the end
-  free_blocks.initial_free_list(start, end, dest_addr - start);
+  initial_free_list(dest_addr - start);
 }
 
 // During compaction we have to be careful and measure object sizes
@@ -211,9 +310,9 @@ allocator_room free_list_allocator<Block>::as_allocator_room() {
   allocator_room room;
   room.size = size;
   room.occupied_space = occupied_space();
-  room.total_free = free_space();
+  room.total_free = free_space;
   room.contiguous_free = largest_free_block();
-  room.free_block_count = free_block_count();
+  room.free_block_count = free_block_count;
   return room;
 }