]> gitweb.factorcode.org Git - factor.git/blob - vm/code_heap.cpp
VM: the factor_vm::code_blocks() method isn't needed
[factor.git] / vm / code_heap.cpp
1 #include "master.hpp"
2
3 namespace factor {
4
5 code_heap::code_heap(cell size) {
6   if (size > ((uint64_t)1 << (sizeof(cell) * 8 - 6)))
7     fatal_error("Heap too large", size);
8   seg = new segment(align_page(size), true);
9   if (!seg)
10     fatal_error("Out of memory in code_heap constructor", size);
11
12   cell start = seg->start + getpagesize() + seh_area_size;
13
14   allocator = new free_list_allocator<code_block>(seg->end - start, start);
15
16   /* See os-windows-x86.64.cpp for seh_area usage */
17   safepoint_page = seg->start;
18   seh_area = (char*)seg->start + getpagesize();
19 }
20
21 code_heap::~code_heap() {
22   delete allocator;
23   allocator = NULL;
24   delete seg;
25   seg = NULL;
26 }
27
28 void code_heap::write_barrier(code_block* compiled) {
29   points_to_nursery.insert(compiled);
30   points_to_aging.insert(compiled);
31 }
32
33 void code_heap::clear_remembered_set() {
34   points_to_nursery.clear();
35   points_to_aging.clear();
36 }
37
38 bool code_heap::uninitialized_p(code_block* compiled) {
39   return uninitialized_blocks.count(compiled) > 0;
40 }
41
42 void code_heap::free(code_block* compiled) {
43   FACTOR_ASSERT(!uninitialized_p(compiled));
44   points_to_nursery.erase(compiled);
45   points_to_aging.erase(compiled);
46   all_blocks.erase((cell)compiled);
47   allocator->free(compiled);
48 }
49
50 void code_heap::flush_icache() { factor::flush_icache(seg->start, seg->size); }
51
52 void code_heap::set_safepoint_guard(bool locked) {
53   if (!set_memory_locked(safepoint_page, getpagesize(), locked)) {
54     fatal_error("Cannot (un)protect safepoint guard page", safepoint_page);
55   }
56 }
57
58 void code_heap::sweep() {
59   auto clear_free_blocks_from_all_blocks = [&](code_block* block, cell size) {
60     std::set<cell>::iterator erase_from =
61       all_blocks.lower_bound((cell)block);
62     std::set<cell>::iterator erase_to =
63       all_blocks.lower_bound((cell)block + size);
64     all_blocks.erase(erase_from, erase_to);
65   };
66   allocator->sweep(clear_free_blocks_from_all_blocks);
67 #ifdef FACTOR_DEBUG
68   verify_all_blocks_set();
69 #endif
70 }
71
72 void code_heap::verify_all_blocks_set() {
73   auto all_blocks_set_verifier = [&](code_block* block, cell size) {
74     FACTOR_ASSERT(all_blocks.find((cell)block) != all_blocks.end());
75   };
76   allocator->iterate(all_blocks_set_verifier);
77 }
78
79 code_block* code_heap::code_block_for_address(cell address) {
80   std::set<cell>::const_iterator blocki = all_blocks.upper_bound(address);
81   FACTOR_ASSERT(blocki != all_blocks.begin());
82   --blocki;
83   code_block* found_block = (code_block*)*blocki;
84   FACTOR_ASSERT(found_block->entry_point() <=
85                 address /* XXX this isn't valid during fixup. should store the
86                                size in the map
87                               && address - found_block->entry_point() <
88                                  found_block->size()*/);
89   return found_block;
90 }
91
92 cell code_heap::frame_predecessor(cell frame_top) {
93   cell addr = *(cell*)frame_top;
94   FACTOR_ASSERT(seg->in_segment_p(addr));
95   //FACTOR_ASSERT(addr != 0);
96   code_block* owner = code_block_for_address(addr);
97   cell frame_size = owner->stack_frame_size_for_address(addr);
98   return frame_top + frame_size;
99 }
100
101 /* Recomputes the all_blocks set of code blocks */
102 void code_heap::initialize_all_blocks_set() {
103   all_blocks.clear();
104   auto all_blocks_set_inserter = [&](code_block* block, cell size) {
105     all_blocks.insert((cell)block);
106   };
107   allocator->iterate(all_blocks_set_inserter);
108 #ifdef FACTOR_DEBUG
109   verify_all_blocks_set();
110 #endif
111 }
112
113 /* Update pointers to words referenced from all code blocks.
114 Only needed after redefining an existing word.
115 If generic words were redefined, inline caches need to be reset. */
116 void factor_vm::update_code_heap_words(bool reset_inline_caches) {
117   auto word_updater = [&](code_block* block, cell size) {
118     update_word_references(block, reset_inline_caches);
119   };
120   each_code_block(word_updater);
121 }
122
123 /* Fix up new words only.
124 Fast path for compilation units that only define new words. */
125 void factor_vm::initialize_code_blocks() {
126
127   FACTOR_FOR_EACH(code->uninitialized_blocks) {
128     initialize_code_block(iter->first, iter->second);
129   }
130   code->uninitialized_blocks.clear();
131 }
132
133 /* Allocates memory */
134 void factor_vm::primitive_modify_code_heap() {
135   bool reset_inline_caches = to_boolean(ctx->pop());
136   bool update_existing_words = to_boolean(ctx->pop());
137   data_root<array> alist(ctx->pop(), this);
138
139   cell count = array_capacity(alist.untagged());
140
141   if (count == 0)
142     return;
143
144   for (cell i = 0; i < count; i++) {
145     data_root<array> pair(array_nth(alist.untagged(), i), this);
146
147     data_root<word> word(array_nth(pair.untagged(), 0), this);
148     data_root<object> data(array_nth(pair.untagged(), 1), this);
149
150     switch (data.type()) {
151       case QUOTATION_TYPE:
152         jit_compile_word(word.value(), data.value(), false);
153         break;
154       case ARRAY_TYPE: {
155         array* compiled_data = data.as<array>().untagged();
156         cell parameters = array_nth(compiled_data, 0);
157         cell literals = array_nth(compiled_data, 1);
158         cell relocation = array_nth(compiled_data, 2);
159         cell labels = array_nth(compiled_data, 3);
160         cell code = array_nth(compiled_data, 4);
161         cell frame_size = untag_fixnum(array_nth(compiled_data, 5));
162
163         code_block* compiled =
164             add_code_block(code_block_optimized, code, labels, word.value(),
165                            relocation, parameters, literals, frame_size);
166
167         word->entry_point = compiled->entry_point();
168       } break;
169       default:
170         critical_error("Expected a quotation or an array", data.value());
171         break;
172     }
173   }
174
175   if (update_existing_words)
176     update_code_heap_words(reset_inline_caches);
177   else
178     initialize_code_blocks();
179 }
180
181 /* Allocates memory */
182 void factor_vm::primitive_code_room() {
183   allocator_room room = code->allocator->as_allocator_room();
184   ctx->push(tag<byte_array>(byte_array_from_value(&room)));
185 }
186
187 void factor_vm::primitive_strip_stack_traces() {
188   auto stack_trace_stripper = [](code_block* block, cell size) {
189     block->owner = false_object;
190   };
191   each_code_block(stack_trace_stripper);
192 }
193
194 /* Allocates memory */
195 void factor_vm::primitive_code_blocks() {
196   std::vector<cell> objects;
197   auto code_block_accumulator = [&](code_block* block, cell size) {
198     objects.push_back(block->owner);
199     objects.push_back(block->parameters);
200     objects.push_back(block->relocation);
201
202     objects.push_back(tag_fixnum(block->type()));
203     objects.push_back(tag_fixnum(block->size()));
204
205     /* Note: the entry point is always a multiple of the heap
206        alignment (16 bytes). We cannot allocate while iterating
207        through the code heap, so it is not possible to call
208        from_unsigned_cell() here. It is OK, however, to add it as
209        if it were a fixnum, and have library code shift it to the
210        left by 4. */
211     cell entry_point = block->entry_point();
212     FACTOR_ASSERT((entry_point & (data_alignment - 1)) == 0);
213     FACTOR_ASSERT((entry_point & TAG_MASK) == FIXNUM_TYPE);
214     objects.push_back(entry_point);
215   };
216   each_code_block(code_block_accumulator);
217   ctx->push(std_vector_to_array(objects));
218 }
219
220 }