]> gitweb.factorcode.org Git - factor.git/blob - vm/data_gc.cpp
07f457b447dd47492f0b3cd77ce3d5a34f3facad
[factor.git] / vm / data_gc.cpp
1 #include "master.hpp"
2
3 namespace factor
4 {
5
6 void factor_vm::init_data_gc()
7 {
8         performing_gc = false;
9         last_code_heap_scan = data->nursery();
10         collecting_aging_again = false;
11 }
12
13 /* Given a pointer to oldspace, copy it to newspace */
14 object *factor_vm::copy_untagged_object_impl(object *pointer, cell size)
15 {
16         if(newspace->here + size >= newspace->end)
17                 longjmp(gc_jmp,1);
18         object *newpointer = allot_zone(newspace,size);
19
20         gc_stats *s = &stats[collecting_gen];
21         s->object_count++;
22         s->bytes_copied += size;
23
24         memcpy(newpointer,pointer,size);
25         return newpointer;
26 }
27
28 object *factor_vm::copy_object_impl(object *untagged)
29 {
30         object *newpointer = copy_untagged_object_impl(untagged,untagged_object_size(untagged));
31         untagged->h.forward_to(newpointer);
32         return newpointer;
33 }
34
35 bool factor_vm::should_copy_p(object *untagged)
36 {
37         if(in_zone(newspace,untagged))
38                 return false;
39         if(collecting_gen == data->tenured())
40                 return true;
41         else if(data->have_aging_p() && collecting_gen == data->aging())
42                 return !in_zone(&data->generations[data->tenured()],untagged);
43         else if(collecting_gen == data->nursery())
44                 return in_zone(&nursery,untagged);
45         else
46         {
47                 critical_error("Bug in should_copy_p",(cell)untagged);
48                 return false;
49         }
50 }
51
52 /* Follow a chain of forwarding pointers */
53 object *factor_vm::resolve_forwarding(object *untagged)
54 {
55         check_data_pointer(untagged);
56
57         /* is there another forwarding pointer? */
58         if(untagged->h.forwarding_pointer_p())
59                 return resolve_forwarding(untagged->h.forwarding_pointer());
60         /* we've found the destination */
61         else
62         {
63                 untagged->h.check_header();
64                 if(should_copy_p(untagged))
65                         return copy_object_impl(untagged);
66                 else
67                         return untagged;
68         }
69 }
70
71 template <typename TYPE> TYPE *factor_vm::copy_untagged_object(TYPE *untagged)
72 {
73         check_data_pointer(untagged);
74
75         if(untagged->h.forwarding_pointer_p())
76                 untagged = (TYPE *)resolve_forwarding(untagged->h.forwarding_pointer());
77         else
78         {
79                 untagged->h.check_header();
80                 untagged = (TYPE *)copy_object_impl(untagged);
81         }
82
83         return untagged;
84 }
85
86 cell factor_vm::copy_object(cell pointer)
87 {
88         return RETAG(copy_untagged_object(untag<object>(pointer)),TAG(pointer));
89 }
90
91 void factor_vm::copy_handle(cell *handle)
92 {
93         cell pointer = *handle;
94
95         if(!immediate_p(pointer))
96         {
97                 object *obj = untag<object>(pointer);
98                 check_data_pointer(obj);
99                 if(should_copy_p(obj))
100                         *handle = copy_object(pointer);
101         }
102 }
103
104 /* Scan all the objects in the card */
105 void factor_vm::copy_card(card *ptr, cell gen, cell here)
106 {
107         cell card_scan = card_to_addr(ptr) + card_offset(ptr);
108         cell card_end = card_to_addr(ptr + 1);
109
110         if(here < card_end)
111                 card_end = here;
112
113         copy_reachable_objects(card_scan,&card_end);
114
115         cards_scanned++;
116 }
117
118 void factor_vm::copy_card_deck(card_deck *deck, cell gen, card mask, card unmask)
119 {
120         card *first_card = deck_to_card(deck);
121         card *last_card = deck_to_card(deck + 1);
122
123         cell here = data->generations[gen].here;
124
125         u32 *quad_ptr;
126         u32 quad_mask = mask | (mask << 8) | (mask << 16) | (mask << 24);
127
128         for(quad_ptr = (u32 *)first_card; quad_ptr < (u32 *)last_card; quad_ptr++)
129         {
130                 if(*quad_ptr & quad_mask)
131                 {
132                         card *ptr = (card *)quad_ptr;
133
134                         int card;
135                         for(card = 0; card < 4; card++)
136                         {
137                                 if(ptr[card] & mask)
138                                 {
139                                         copy_card(&ptr[card],gen,here);
140                                         ptr[card] &= ~unmask;
141                                 }
142                         }
143                 }
144         }
145
146         decks_scanned++;
147 }
148
149 /* Copy all newspace objects referenced from marked cards to the destination */
150 void factor_vm::copy_gen_cards(cell gen)
151 {
152         card_deck *first_deck = addr_to_deck(data->generations[gen].start);
153         card_deck *last_deck = addr_to_deck(data->generations[gen].end);
154
155         card mask, unmask;
156
157         /* if we are collecting the nursery, we care about old->nursery pointers
158         but not old->aging pointers */
159         if(collecting_gen == data->nursery())
160         {
161                 mask = card_points_to_nursery;
162
163                 /* after the collection, no old->nursery pointers remain
164                 anywhere, but old->aging pointers might remain in tenured
165                 space */
166                 if(gen == data->tenured())
167                         unmask = card_points_to_nursery;
168                 /* after the collection, all cards in aging space can be
169                 cleared */
170                 else if(data->have_aging_p() && gen == data->aging())
171                         unmask = card_mark_mask;
172                 else
173                 {
174                         critical_error("bug in copy_gen_cards",gen);
175                         return;
176                 }
177         }
178         /* if we are collecting aging space into tenured space, we care about
179         all old->nursery and old->aging pointers. no old->aging pointers can
180         remain */
181         else if(data->have_aging_p() && collecting_gen == data->aging())
182         {
183                 if(collecting_aging_again)
184                 {
185                         mask = card_points_to_aging;
186                         unmask = card_mark_mask;
187                 }
188                 /* after we collect aging space into the aging semispace, no
189                 old->nursery pointers remain but tenured space might still have
190                 pointers to aging space. */
191                 else
192                 {
193                         mask = card_points_to_aging;
194                         unmask = card_points_to_nursery;
195                 }
196         }
197         else
198         {
199                 critical_error("bug in copy_gen_cards",gen);
200                 return;
201         }
202
203         card_deck *ptr;
204
205         for(ptr = first_deck; ptr < last_deck; ptr++)
206         {
207                 if(*ptr & mask)
208                 {
209                         copy_card_deck(ptr,gen,mask,unmask);
210                         *ptr &= ~unmask;
211                 }
212         }
213 }
214
215 /* Scan cards in all generations older than the one being collected, copying
216 old->new references */
217 void factor_vm::copy_cards()
218 {
219         u64 start = current_micros();
220
221         cell i;
222         for(i = collecting_gen + 1; i < data->gen_count; i++)
223                 copy_gen_cards(i);
224
225         card_scan_time += (current_micros() - start);
226 }
227
228 /* Copy all tagged pointers in a range of memory */
229 void factor_vm::copy_stack_elements(segment *region, cell top)
230 {
231         cell ptr = region->start;
232
233         for(; ptr <= top; ptr += sizeof(cell))
234                 copy_handle((cell*)ptr);
235 }
236
237 void factor_vm::copy_registered_locals()
238 {
239         std::vector<cell>::const_iterator iter = gc_locals.begin();
240         std::vector<cell>::const_iterator end = gc_locals.end();
241
242         for(; iter < end; iter++)
243                 copy_handle((cell *)(*iter));
244 }
245
246 void factor_vm::copy_registered_bignums()
247 {
248         std::vector<cell>::const_iterator iter = gc_bignums.begin();
249         std::vector<cell>::const_iterator end = gc_bignums.end();
250
251         for(; iter < end; iter++)
252         {
253                 bignum **handle = (bignum **)(*iter);
254                 bignum *pointer = *handle;
255
256                 if(pointer)
257                 {
258                         check_data_pointer(pointer);
259                         if(should_copy_p(pointer))
260                                 *handle = copy_untagged_object(pointer);
261 #ifdef FACTOR_DEBUG
262                         assert((*handle)->h.hi_tag() == BIGNUM_TYPE);
263 #endif
264                 }
265         }
266 }
267
268 /* Copy roots over at the start of GC, namely various constants, stacks,
269 the user environment and extra roots registered by local_roots.hpp */
270 void factor_vm::copy_roots()
271 {
272         copy_handle(&T);
273         copy_handle(&bignum_zero);
274         copy_handle(&bignum_pos_one);
275         copy_handle(&bignum_neg_one);
276
277         copy_registered_locals();
278         copy_registered_bignums();
279
280         if(!performing_compaction)
281         {
282                 save_stacks();
283                 context *stacks = stack_chain;
284
285                 while(stacks)
286                 {
287                         copy_stack_elements(stacks->datastack_region,stacks->datastack);
288                         copy_stack_elements(stacks->retainstack_region,stacks->retainstack);
289
290                         copy_handle(&stacks->catchstack_save);
291                         copy_handle(&stacks->current_callback_save);
292
293                         mark_active_blocks(stacks);
294
295                         stacks = stacks->next;
296                 }
297         }
298
299         int i;
300         for(i = 0; i < USER_ENV; i++)
301                 copy_handle(&userenv[i]);
302 }
303
304 cell factor_vm::copy_next_from_nursery(cell scan)
305 {
306         cell *obj = (cell *)scan;
307         cell *end = (cell *)(scan + binary_payload_start((object *)scan));
308
309         if(obj != end)
310         {
311                 obj++;
312
313                 cell nursery_start = nursery.start;
314                 cell nursery_end = nursery.end;
315
316                 for(; obj < end; obj++)
317                 {
318                         cell pointer = *obj;
319
320                         if(!immediate_p(pointer))
321                         {
322                                 check_data_pointer((object *)pointer);
323                                 if(pointer >= nursery_start && pointer < nursery_end)
324                                         *obj = copy_object(pointer);
325                         }
326                 }
327         }
328
329         return scan + untagged_object_size((object *)scan);
330 }
331
332 cell factor_vm::copy_next_from_aging(cell scan)
333 {
334         cell *obj = (cell *)scan;
335         cell *end = (cell *)(scan + binary_payload_start((object *)scan));
336
337         if(obj != end)
338         {
339                 obj++;
340
341                 cell tenured_start = data->generations[data->tenured()].start;
342                 cell tenured_end = data->generations[data->tenured()].end;
343
344                 cell newspace_start = newspace->start;
345                 cell newspace_end = newspace->end;
346
347                 for(; obj < end; obj++)
348                 {
349                         cell pointer = *obj;
350
351                         if(!immediate_p(pointer))
352                         {
353                                 check_data_pointer((object *)pointer);
354                                 if(!(pointer >= newspace_start && pointer < newspace_end)
355                                    && !(pointer >= tenured_start && pointer < tenured_end))
356                                         *obj = copy_object(pointer);
357                         }
358                 }
359         }
360
361         return scan + untagged_object_size((object *)scan);
362 }
363
364 cell factor_vm::copy_next_from_tenured(cell scan)
365 {
366         cell *obj = (cell *)scan;
367         cell *end = (cell *)(scan + binary_payload_start((object *)scan));
368
369         if(obj != end)
370         {
371                 obj++;
372
373                 cell newspace_start = newspace->start;
374                 cell newspace_end = newspace->end;
375
376                 for(; obj < end; obj++)
377                 {
378                         cell pointer = *obj;
379
380                         if(!immediate_p(pointer))
381                         {
382                                 check_data_pointer((object *)pointer);
383                                 if(!(pointer >= newspace_start && pointer < newspace_end))
384                                         *obj = copy_object(pointer);
385                         }
386                 }
387         }
388
389         mark_object_code_block((object *)scan);
390
391         return scan + untagged_object_size((object *)scan);
392 }
393
394 void factor_vm::copy_reachable_objects(cell scan, cell *end)
395 {
396         if(collecting_gen == data->nursery())
397         {
398                 while(scan < *end)
399                         scan = copy_next_from_nursery(scan);
400         }
401         else if(data->have_aging_p() && collecting_gen == data->aging())
402         {
403                 while(scan < *end)
404                         scan = copy_next_from_aging(scan);
405         }
406         else if(collecting_gen == data->tenured())
407         {
408                 while(scan < *end)
409                         scan = copy_next_from_tenured(scan);
410         }
411 }
412
413 /* Prepare to start copying reachable objects into an unused zone */
414 void factor_vm::begin_gc(cell requested_bytes)
415 {
416         if(growing_data_heap)
417         {
418                 if(collecting_gen != data->tenured())
419                         critical_error("Invalid parameters to begin_gc",0);
420
421                 old_data_heap = data;
422                 set_data_heap(grow_data_heap(old_data_heap,requested_bytes));
423                 newspace = &data->generations[data->tenured()];
424         }
425         else if(collecting_accumulation_gen_p())
426         {
427                 /* when collecting one of these generations, rotate it
428                 with the semispace */
429                 zone z = data->generations[collecting_gen];
430                 data->generations[collecting_gen] = data->semispaces[collecting_gen];
431                 data->semispaces[collecting_gen] = z;
432                 reset_generation(collecting_gen);
433                 newspace = &data->generations[collecting_gen];
434                 clear_cards(collecting_gen,collecting_gen);
435                 clear_decks(collecting_gen,collecting_gen);
436                 clear_allot_markers(collecting_gen,collecting_gen);
437         }
438         else
439         {
440                 /* when collecting a younger generation, we copy
441                 reachable objects to the next oldest generation,
442                 so we set the newspace so the next generation. */
443                 newspace = &data->generations[collecting_gen + 1];
444         }
445 }
446
447 void factor_vm::end_gc(cell gc_elapsed)
448 {
449         gc_stats *s = &stats[collecting_gen];
450
451         s->collections++;
452         s->gc_time += gc_elapsed;
453         if(s->max_gc_time < gc_elapsed)
454                 s->max_gc_time = gc_elapsed;
455
456         if(growing_data_heap)
457         {
458                 delete old_data_heap;
459                 old_data_heap = NULL;
460                 growing_data_heap = false;
461         }
462
463         if(collecting_accumulation_gen_p())
464         {
465                 /* all younger generations except are now empty.
466                 if collecting_gen == data->nursery() here, we only have 1 generation;
467                 old-school Cheney collector */
468                 if(collecting_gen != data->nursery())
469                         reset_generations(data->nursery(),collecting_gen - 1);
470         }
471         else if(collecting_gen == data->nursery())
472         {
473                 nursery.here = nursery.start;
474         }
475         else
476         {
477                 /* all generations up to and including the one
478                 collected are now empty */
479                 reset_generations(data->nursery(),collecting_gen);
480         }
481
482         collecting_aging_again = false;
483 }
484
485 /* Collect gen and all younger generations.
486 If growing_data_heap_ is true, we must grow the data heap to such a size that
487 an allocation of requested_bytes won't fail */
488 void factor_vm::garbage_collection(cell gen,bool growing_data_heap_,cell requested_bytes)
489 {
490         if(gc_off)
491         {
492                 critical_error("GC disabled",gen);
493                 return;
494         }
495
496         u64 start = current_micros();
497
498         performing_gc = true;
499         growing_data_heap = growing_data_heap_;
500         collecting_gen = gen;
501
502         /* we come back here if a generation is full */
503         if(setjmp(gc_jmp))
504         {
505                 /* We have no older generations we can try collecting, so we
506                 resort to growing the data heap */
507                 if(collecting_gen == data->tenured())
508                 {
509                         growing_data_heap = true;
510
511                         /* see the comment in unmark_marked() */
512                         code->unmark_marked();
513                 }
514                 /* we try collecting aging space twice before going on to
515                 collect tenured */
516                 else if(data->have_aging_p()
517                         && collecting_gen == data->aging()
518                         && !collecting_aging_again)
519                 {
520                         collecting_aging_again = true;
521                 }
522                 /* Collect the next oldest generation */
523                 else
524                 {
525                         collecting_gen++;
526                 }
527         }
528
529         begin_gc(requested_bytes);
530
531         /* initialize chase pointer */
532         cell scan = newspace->here;
533
534         /* collect objects referenced from stacks and environment */
535         copy_roots();
536         /* collect objects referenced from older generations */
537         copy_cards();
538
539         /* do some tracing */
540         copy_reachable_objects(scan,&newspace->here);
541
542         /* don't scan code heap unless it has pointers to this
543         generation or younger */
544         if(collecting_gen >= last_code_heap_scan)
545         {
546                 code_heap_scans++;
547
548                 if(collecting_gen == data->tenured())
549                         code->free_unmarked((heap_iterator)factor::update_literal_and_word_references);
550                 else
551                         copy_code_heap_roots();
552
553                 if(collecting_accumulation_gen_p())
554                         last_code_heap_scan = collecting_gen;
555                 else
556                         last_code_heap_scan = collecting_gen + 1;
557         }
558
559         cell gc_elapsed = (current_micros() - start);
560
561         end_gc(gc_elapsed);
562
563         performing_gc = false;
564 }
565
566 void factor_vm::gc()
567 {
568         garbage_collection(data->tenured(),false,0);
569 }
570
571 inline void factor_vm::primitive_gc()
572 {
573         gc();
574 }
575
576 PRIMITIVE_FORWARD(gc)
577
578 inline void factor_vm::primitive_gc_stats()
579 {
580         growable_array result(this);
581
582         cell i;
583         u64 total_gc_time = 0;
584
585         for(i = 0; i < max_gen_count; i++)
586         {
587                 gc_stats *s = &stats[i];
588                 result.add(allot_cell(s->collections));
589                 result.add(tag<bignum>(long_long_to_bignum(s->gc_time)));
590                 result.add(tag<bignum>(long_long_to_bignum(s->max_gc_time)));
591                 result.add(allot_cell(s->collections == 0 ? 0 : s->gc_time / s->collections));
592                 result.add(allot_cell(s->object_count));
593                 result.add(tag<bignum>(long_long_to_bignum(s->bytes_copied)));
594
595                 total_gc_time += s->gc_time;
596         }
597
598         result.add(tag<bignum>(ulong_long_to_bignum(total_gc_time)));
599         result.add(tag<bignum>(ulong_long_to_bignum(cards_scanned)));
600         result.add(tag<bignum>(ulong_long_to_bignum(decks_scanned)));
601         result.add(tag<bignum>(ulong_long_to_bignum(card_scan_time)));
602         result.add(allot_cell(code_heap_scans));
603
604         result.trim();
605         dpush(result.elements.value());
606 }
607
608 PRIMITIVE_FORWARD(gc_stats)
609
610 void factor_vm::clear_gc_stats()
611 {
612         for(cell i = 0; i < max_gen_count; i++)
613                 memset(&stats[i],0,sizeof(gc_stats));
614
615         cards_scanned = 0;
616         decks_scanned = 0;
617         card_scan_time = 0;
618         code_heap_scans = 0;
619 }
620
621 inline void factor_vm::primitive_clear_gc_stats()
622 {
623         clear_gc_stats();
624 }
625
626 PRIMITIVE_FORWARD(clear_gc_stats)
627
628 /* classes.tuple uses this to reshape tuples; tools.deploy.shaker uses this
629    to coalesce equal but distinct quotations and wrappers. */
630 inline void factor_vm::primitive_become()
631 {
632         array *new_objects = untag_check<array>(dpop());
633         array *old_objects = untag_check<array>(dpop());
634
635         cell capacity = array_capacity(new_objects);
636         if(capacity != array_capacity(old_objects))
637                 critical_error("bad parameters to become",0);
638
639         cell i;
640
641         for(i = 0; i < capacity; i++)
642         {
643                 tagged<object> old_obj(array_nth(old_objects,i));
644                 tagged<object> new_obj(array_nth(new_objects,i));
645
646                 if(old_obj != new_obj)
647                         old_obj->h.forward_to(new_obj.untagged());
648         }
649
650         gc();
651
652         /* If a word's definition quotation was in old_objects and the
653            quotation in new_objects is not compiled, we might leak memory
654            by referencing the old quotation unless we recompile all
655            unoptimized words. */
656         compile_all_words();
657 }
658
659 PRIMITIVE_FORWARD(become)
660
661 void factor_vm::inline_gc(cell *gc_roots_base, cell gc_roots_size)
662 {
663         for(cell i = 0; i < gc_roots_size; i++)
664                 gc_locals.push_back((cell)&gc_roots_base[i]);
665
666         garbage_collection(data->nursery(),false,0);
667
668         for(cell i = 0; i < gc_roots_size; i++)
669                 gc_locals.pop_back();
670 }
671
672 VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *myvm)
673 {
674         ASSERTVM();
675         VM_PTR->inline_gc(gc_roots_base,gc_roots_size);
676 }
677
678 }