]> gitweb.factorcode.org Git - factor.git/blob - vm/data_heap.cpp
VM: Refactor data_heap* to Factor style
[factor.git] / vm / data_heap.cpp
1 #include "master.hpp"
2
3 namespace factor {
4
5 void factor_vm::init_card_decks() {
6   cards_offset = (cell) data->cards - addr_to_card(data->start);
7   decks_offset = (cell) data->decks - addr_to_deck(data->start);
8 }
9
10 data_heap::data_heap(cell young_size_, cell aging_size_, cell tenured_size_) {
11   young_size_ = align(young_size_, deck_size);
12   aging_size_ = align(aging_size_, deck_size);
13   tenured_size_ = align(tenured_size_, deck_size);
14
15   young_size = young_size_;
16   aging_size = aging_size_;
17   tenured_size = tenured_size_;
18
19   cell total_size = young_size + 2 * aging_size + tenured_size + deck_size;
20   seg = new segment(total_size, false);
21
22   cell cards_size = addr_to_card(total_size);
23   cards = new card[cards_size];
24   cards_end = cards + cards_size;
25   memset(cards, 0, cards_size);
26
27   cell decks_size = addr_to_deck(total_size);
28   decks = new card_deck[decks_size];
29   decks_end = decks + decks_size;
30   memset(decks, 0, decks_size);
31
32   start = align(seg->start, deck_size);
33
34   tenured = new tenured_space(tenured_size, start);
35
36   aging = new aging_space(aging_size, tenured->end);
37   aging_semispace = new aging_space(aging_size, aging->end);
38
39   nursery = new nursery_space(young_size, aging_semispace->end);
40
41   FACTOR_ASSERT(seg->end - nursery->end <= deck_size);
42 }
43
44 data_heap::~data_heap() {
45   delete seg;
46   delete nursery;
47   delete aging;
48   delete aging_semispace;
49   delete tenured;
50   delete[] cards;
51   delete[] decks;
52 }
53
54 data_heap* data_heap::grow(cell requested_bytes) {
55   cell new_tenured_size = (tenured_size * 2) + requested_bytes;
56   return new data_heap(young_size, aging_size, new_tenured_size);
57 }
58
59 template <typename Generation> void data_heap::clear_cards(Generation* gen) {
60   cell first_card = addr_to_card(gen->start - start);
61   cell last_card = addr_to_card(gen->end - start);
62   memset(&cards[first_card], 0, last_card - first_card);
63 }
64
65 template <typename Generation> void data_heap::clear_decks(Generation* gen) {
66   cell first_deck = addr_to_deck(gen->start - start);
67   cell last_deck = addr_to_deck(gen->end - start);
68   memset(&decks[first_deck], 0, last_deck - first_deck);
69 }
70
71 void data_heap::reset_generation(nursery_space* gen) { gen->here = gen->start; }
72
73 void data_heap::reset_generation(aging_space* gen) {
74   gen->here = gen->start;
75   clear_cards(gen);
76   clear_decks(gen);
77   gen->starts.clear_object_start_offsets();
78 }
79
80 void data_heap::reset_generation(tenured_space* gen) {
81   clear_cards(gen);
82   clear_decks(gen);
83 }
84
85 bool data_heap::high_fragmentation_p() {
86   return (tenured->largest_free_block() <= high_water_mark());
87 }
88
89 bool data_heap::low_memory_p() {
90   return (tenured->free_space() <= high_water_mark());
91 }
92
93 void data_heap::mark_all_cards() {
94   memset(cards, -1, cards_end - cards);
95   memset(decks, -1, decks_end - decks);
96 }
97
98 void factor_vm::set_data_heap(data_heap* data_) {
99   data = data_;
100   nursery = *data->nursery;
101   init_card_decks();
102 }
103
104 void factor_vm::init_data_heap(cell young_size, cell aging_size,
105                                cell tenured_size) {
106   set_data_heap(new data_heap(young_size, aging_size, tenured_size));
107 }
108
109 data_heap_room factor_vm::data_room() {
110   data_heap_room room;
111
112   room.nursery_size = nursery.size;
113   room.nursery_occupied = nursery.occupied_space();
114   room.nursery_free = nursery.free_space();
115   room.aging_size = data->aging->size;
116   room.aging_occupied = data->aging->occupied_space();
117   room.aging_free = data->aging->free_space();
118   room.tenured_size = data->tenured->size;
119   room.tenured_occupied = data->tenured->occupied_space();
120   room.tenured_total_free = data->tenured->free_space();
121   room.tenured_contiguous_free = data->tenured->largest_free_block();
122   room.tenured_free_block_count = data->tenured->free_block_count();
123   room.cards = data->cards_end - data->cards;
124   room.decks = data->decks_end - data->decks;
125   room.mark_stack = mark_stack.capacity() * sizeof(cell);
126
127   return room;
128 }
129
130 /* Allocates memory */
131 void factor_vm::primitive_data_room() {
132   data_heap_room room = data_room();
133   ctx->push(tag<byte_array>(byte_array_from_value(&room)));
134 }
135
136 struct object_accumulator {
137   cell type;
138   std::vector<cell> objects;
139
140   explicit object_accumulator(cell type_) : type(type_) {}
141
142   void operator()(object* obj) {
143     if (type == TYPE_COUNT || obj->type() == type)
144       objects.push_back(tag_dynamic(obj));
145   }
146 };
147
148 /* Allocates memory */
149 cell factor_vm::instances(cell type) {
150   object_accumulator accum(type);
151   each_object(accum);
152   return std_vector_to_array(accum.objects);
153 }
154
155 /* Allocates memory */
156 void factor_vm::primitive_all_instances() {
157   primitive_full_gc();
158   ctx->push(instances(TYPE_COUNT));
159 }
160
161 }