]> gitweb.factorcode.org Git - factor.git/blob - vm/gc.cpp
Merge branch 'master' of git://factorcode.org/git/factor
[factor.git] / vm / gc.cpp
1 #include "master.hpp"
2
3 namespace factor
4 {
5
6 gc_state::gc_state(gc_op op_) : op(op_), start_time(current_micros()) {}
7
8 gc_state::~gc_state() {}
9
10 void factor_vm::update_code_heap_for_minor_gc(std::set<code_block *> *remembered_set)
11 {
12         /* The youngest generation that any code block can now reference */
13         std::set<code_block *>::const_iterator iter = remembered_set->begin();
14         std::set<code_block *>::const_iterator end = remembered_set->end();
15
16         for(; iter != end; iter++) update_literal_references(*iter);
17 }
18
19 void factor_vm::record_gc_stats(generation_statistics *stats)
20 {
21         cell gc_elapsed = (current_micros() - current_gc->start_time);
22         stats->collections++;
23         stats->gc_time += gc_elapsed;
24         if(stats->max_gc_time < gc_elapsed)
25                 stats->max_gc_time = gc_elapsed;
26 }
27
28 void factor_vm::gc(gc_op op,
29         cell requested_bytes,
30         bool trace_contexts_p,
31         bool compact_code_heap_p)
32 {
33         assert(!gc_off);
34         assert(!current_gc);
35
36         save_stacks();
37
38         current_gc = new gc_state(op);
39
40         /* Keep trying to GC higher and higher generations until we don't run out
41         of space */
42         if(setjmp(current_gc->gc_unwind))
43         {
44                 /* We come back here if a generation is full */
45                 switch(current_gc->op)
46                 {
47                 case collect_nursery_op:
48                         current_gc->op = collect_aging_op;
49                         break;
50                 case collect_aging_op:
51                         current_gc->op = collect_to_tenured_op;
52                         break;
53                 case collect_to_tenured_op:
54                         current_gc->op = collect_full_op;
55                         break;
56                 case collect_full_op:
57                         current_gc->op = collect_growing_heap_op;
58                         break;
59                 default:
60                         critical_error("Bad GC op\n",op);
61                         break;
62                 }
63         }
64
65         switch(current_gc->op)
66         {
67         case collect_nursery_op:
68                 collect_nursery();
69                 record_gc_stats(&gc_stats.nursery_stats);
70                 break;
71         case collect_aging_op:
72                 collect_aging();
73                 record_gc_stats(&gc_stats.aging_stats);
74                 break;
75         case collect_to_tenured_op:
76                 collect_to_tenured();
77                 record_gc_stats(&gc_stats.aging_stats);
78                 break;
79         case collect_full_op:
80                 collect_full(trace_contexts_p,compact_code_heap_p);
81                 record_gc_stats(&gc_stats.full_stats);
82                 break;
83         case collect_growing_heap_op:
84                 collect_growing_heap(requested_bytes,trace_contexts_p,compact_code_heap_p);
85                 record_gc_stats(&gc_stats.full_stats);
86                 break;
87         default:
88                 critical_error("Bad GC op\n",op);
89                 break;
90         }
91
92         delete current_gc;
93         current_gc = NULL;
94 }
95
96 void factor_vm::primitive_minor_gc()
97 {
98         gc(collect_nursery_op,
99                 0, /* requested size */
100                 true, /* trace contexts? */
101                 false /* compact code heap? */);
102 }
103
104 void factor_vm::primitive_full_gc()
105 {
106         gc(collect_full_op,
107                 0, /* requested size */
108                 true, /* trace contexts? */
109                 false /* compact code heap? */);
110 }
111
112 void factor_vm::primitive_compact_gc()
113 {
114         gc(collect_full_op,
115                 0, /* requested size */
116                 true, /* trace contexts? */
117                 true /* compact code heap? */);
118 }
119
120 void factor_vm::add_gc_stats(generation_statistics *stats, growable_array *result)
121 {
122         result->add(allot_cell(stats->collections));
123         result->add(tag<bignum>(long_long_to_bignum(stats->gc_time)));
124         result->add(tag<bignum>(long_long_to_bignum(stats->max_gc_time)));
125         result->add(allot_cell(stats->collections == 0 ? 0 : stats->gc_time / stats->collections));
126         result->add(allot_cell(stats->object_count));
127         result->add(tag<bignum>(long_long_to_bignum(stats->bytes_copied)));
128 }
129
130 void factor_vm::primitive_gc_stats()
131 {
132         growable_array result(this);
133
134         add_gc_stats(&gc_stats.nursery_stats,&result);
135         add_gc_stats(&gc_stats.aging_stats,&result);
136         add_gc_stats(&gc_stats.full_stats,&result);
137
138         u64 total_gc_time =
139                 gc_stats.nursery_stats.gc_time +
140                 gc_stats.aging_stats.gc_time +
141                 gc_stats.full_stats.gc_time;
142
143         result.add(tag<bignum>(ulong_long_to_bignum(total_gc_time)));
144         result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.cards_scanned)));
145         result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.decks_scanned)));
146         result.add(tag<bignum>(ulong_long_to_bignum(gc_stats.card_scan_time)));
147         result.add(allot_cell(gc_stats.code_blocks_scanned));
148
149         result.trim();
150         dpush(result.elements.value());
151 }
152
153 void factor_vm::clear_gc_stats()
154 {
155         memset(&gc_stats,0,sizeof(gc_statistics));
156 }
157
158 void factor_vm::primitive_clear_gc_stats()
159 {
160         clear_gc_stats();
161 }
162
163 /* classes.tuple uses this to reshape tuples; tools.deploy.shaker uses this
164    to coalesce equal but distinct quotations and wrappers. */
165 void factor_vm::primitive_become()
166 {
167         array *new_objects = untag_check<array>(dpop());
168         array *old_objects = untag_check<array>(dpop());
169
170         cell capacity = array_capacity(new_objects);
171         if(capacity != array_capacity(old_objects))
172                 critical_error("bad parameters to become",0);
173
174         cell i;
175
176         for(i = 0; i < capacity; i++)
177         {
178                 tagged<object> old_obj(array_nth(old_objects,i));
179                 tagged<object> new_obj(array_nth(new_objects,i));
180
181                 if(old_obj != new_obj)
182                         old_obj->h.forward_to(new_obj.untagged());
183         }
184
185         primitive_full_gc();
186
187         /* If a word's definition quotation was in old_objects and the
188            quotation in new_objects is not compiled, we might leak memory
189            by referencing the old quotation unless we recompile all
190            unoptimized words. */
191         compile_all_words();
192 }
193
194 void factor_vm::inline_gc(cell *gc_roots_base, cell gc_roots_size)
195 {
196         for(cell i = 0; i < gc_roots_size; i++)
197                 gc_locals.push_back((cell)&gc_roots_base[i]);
198
199         primitive_minor_gc();
200
201         for(cell i = 0; i < gc_roots_size; i++)
202                 gc_locals.pop_back();
203 }
204
205 VM_C_API void inline_gc(cell *gc_roots_base, cell gc_roots_size, factor_vm *parent)
206 {
207         parent->inline_gc(gc_roots_base,gc_roots_size);
208 }
209
210 /*
211  * It is up to the caller to fill in the object's fields in a meaningful
212  * fashion!
213  */
214 object *factor_vm::allot_object(header header, cell size)
215 {
216 #ifdef GC_DEBUG
217         if(!gc_off)
218                 primitive_full_gc();
219 #endif
220
221         object *obj;
222
223         /* If the object is smaller than the nursery, allocate it in the nursery,
224         after a GC if needed */
225         if(nursery.size > size)
226         {
227                 /* If there is insufficient room, collect the nursery */
228                 if(nursery.here + size > nursery.end)
229                         primitive_minor_gc();
230
231                 obj = nursery.allot(size);
232         }
233         /* If the object is bigger than the nursery, allocate it in
234         tenured space */
235         else
236         {
237                 /* If tenured space does not have enough room, collect */
238                 if(data->tenured->here + size > data->tenured->end)
239                         primitive_full_gc();
240
241                 /* If it still won't fit, grow the heap */
242                 if(data->tenured->here + size > data->tenured->end)
243                 {
244                         gc(collect_growing_heap_op,
245                                 size, /* requested size */
246                                 true, /* trace contexts? */
247                                 false /* compact code heap? */);
248                 }
249
250                 obj = data->tenured->allot(size);
251
252                 /* Allows initialization code to store old->new pointers
253                 without hitting the write barrier in the common case of
254                 a nursery allocation */
255                 char *start = (char *)obj;
256                 for(cell offset = 0; offset < size; offset += card_size)
257                         write_barrier((cell *)(start + offset));
258         }
259
260         obj->h = header;
261         return obj;
262 }
263
264 }