]> gitweb.factorcode.org Git - factor.git/blob - vm/gc.cpp
VM: don't end the gc event in start_gc_again, fixes #659
[factor.git] / vm / gc.cpp
1 #include "master.hpp"
2
3 namespace factor {
4
5 gc_event::gc_event(gc_op op, factor_vm* parent)
6     : op(op),
7       cards_scanned(0),
8       decks_scanned(0),
9       code_blocks_scanned(0),
10       start_time(nano_count()),
11       card_scan_time(0),
12       code_scan_time(0),
13       data_sweep_time(0),
14       code_sweep_time(0),
15       compaction_time(0) {
16   data_heap_before = parent->data_room();
17   code_heap_before = parent->code->allocator->as_allocator_room();
18   start_time = nano_count();
19 }
20
21 void gc_event::reset_timer() { temp_time = nano_count(); }
22
23 void gc_event::ended_card_scan(cell cards_scanned_, cell decks_scanned_) {
24   cards_scanned += cards_scanned_;
25   decks_scanned += decks_scanned_;
26   card_scan_time = (cell)(nano_count() - temp_time);
27 }
28
29 void gc_event::ended_code_scan(cell code_blocks_scanned_) {
30   code_blocks_scanned += code_blocks_scanned_;
31   code_scan_time = (cell)(nano_count() - temp_time);
32 }
33
34 void gc_event::ended_data_sweep() {
35   data_sweep_time = (cell)(nano_count() - temp_time);
36 }
37
38 void gc_event::ended_code_sweep() {
39   code_sweep_time = (cell)(nano_count() - temp_time);
40 }
41
42 void gc_event::ended_compaction() {
43   compaction_time = (cell)(nano_count() - temp_time);
44 }
45
46 void gc_event::ended_gc(factor_vm* parent) {
47   data_heap_after = parent->data_room();
48   code_heap_after = parent->code->allocator->as_allocator_room();
49   total_time = (cell)(nano_count() - start_time);
50 }
51
52 gc_state::gc_state(gc_op op, factor_vm* parent) : op(op) {
53   if (parent->gc_events) {
54     event = new gc_event(op, parent);
55     start_time = nano_count();
56   } else
57     event = NULL;
58 }
59
60 gc_state::~gc_state() {
61   if (event) {
62     delete event;
63     event = NULL;
64   }
65 }
66
67 void factor_vm::end_gc() {
68   if (gc_events) {
69     current_gc->event->ended_gc(this);
70     gc_events->push_back(*current_gc->event);
71   }
72 }
73
74 void factor_vm::start_gc_again() {
75   switch (current_gc->op) {
76     case collect_nursery_op:
77       /* Nursery collection can fail if aging does not have enough
78          free space to fit all live objects from nursery. */
79       current_gc->op = collect_aging_op;
80       break;
81     case collect_aging_op:
82       /* Aging collection can fail if the aging semispace cannot fit
83          all the live objects from the other aging semispace and the
84          nursery. */
85       current_gc->op = collect_to_tenured_op;
86       break;
87     default:
88       /* Nothing else should fail mid-collection due to insufficient
89          space in the target generation. */
90       critical_error("in start_gc_again, bad GC op", current_gc->op);
91       break;
92   }
93 }
94
95 void factor_vm::set_current_gc_op(gc_op op) {
96   current_gc->op = op;
97   if (gc_events)
98     current_gc->event->op = op;
99 }
100
101 void factor_vm::gc(gc_op op, cell requested_size) {
102   FACTOR_ASSERT(!gc_off);
103   FACTOR_ASSERT(!current_gc);
104
105   /* Important invariant: tenured space must have enough contiguous free
106      space to fit the entire contents of the aging space and nursery. This is
107      because when doing a full collection, objects from younger generations
108      are promoted before any unreachable tenured objects are freed. */
109   FACTOR_ASSERT(!data->high_fragmentation_p());
110
111   current_gc = new gc_state(op, this);
112   if (ctx)
113     ctx->callstack_seg->set_border_locked(false);
114   atomic::store(&current_gc_p, true);
115
116   /* Keep trying to GC higher and higher generations until we don't run
117      out of space in the target generation. */
118   for (;;) {
119     try {
120       if (gc_events)
121         current_gc->event->op = current_gc->op;
122
123       switch (current_gc->op) {
124         case collect_nursery_op:
125           collect_nursery();
126           break;
127         case collect_aging_op:
128           /* We end up here if the above fails. */
129           collect_aging();
130           if (data->high_fragmentation_p()) {
131             /* Change GC op so that if we fail again, we crash. */
132             set_current_gc_op(collect_full_op);
133             collect_full();
134           }
135           break;
136         case collect_to_tenured_op:
137           /* We end up here if the above fails. */
138           collect_to_tenured();
139           if (data->high_fragmentation_p()) {
140             /* Change GC op so that if we fail again, we crash. */
141             set_current_gc_op(collect_full_op);
142             collect_full();
143           }
144           break;
145         case collect_full_op:
146           collect_full();
147           break;
148         case collect_compact_op:
149           collect_compact();
150           break;
151         case collect_growing_heap_op:
152           collect_growing_heap(requested_size);
153           break;
154         default:
155           critical_error("in gc, bad GC op", current_gc->op);
156           break;
157       }
158
159       break;
160     }
161     catch (const must_start_gc_again&) {
162       /* We come back here if the target generation is full. */
163       start_gc_again();
164       continue;
165     }
166   }
167
168   end_gc();
169
170   atomic::store(&current_gc_p, false);
171   if (ctx)
172     ctx->callstack_seg->set_border_locked(true);
173   delete current_gc;
174   current_gc = NULL;
175
176   /* Check the invariant again, just in case. */
177   FACTOR_ASSERT(!data->high_fragmentation_p());
178 }
179
180 void factor_vm::primitive_minor_gc() {
181   gc(collect_nursery_op, 0);
182 }
183
184 void factor_vm::primitive_full_gc() {
185   gc(collect_full_op, 0);
186 }
187
188 void factor_vm::primitive_compact_gc() {
189   gc(collect_compact_op, 0);
190 }
191
192 /*
193  * It is up to the caller to fill in the object's fields in a meaningful
194  * fashion!
195  */
196 /* Allocates memory */
197 object* factor_vm::allot_large_object(cell type, cell size) {
198   /* If tenured space does not have enough room, collect and compact */
199   cell requested_size = size + data->high_water_mark();
200   if (!data->tenured->can_allot_p(requested_size)) {
201     primitive_compact_gc();
202
203     /* If it still won't fit, grow the heap */
204     if (!data->tenured->can_allot_p(requested_size)) {
205       gc(collect_growing_heap_op, size);
206     }
207   }
208
209   object* obj = data->tenured->allot(size);
210
211   /* Allows initialization code to store old->new pointers
212      without hitting the write barrier in the common case of
213      a nursery allocation */
214   write_barrier(obj, size);
215
216   obj->initialize(type);
217   return obj;
218 }
219
220 void factor_vm::primitive_enable_gc_events() {
221   gc_events = new std::vector<gc_event>();
222 }
223
224 /* Allocates memory (byte_array_from_value, result.add) */
225 /* XXX: Remember that growable_array has a data_root already */
226 void factor_vm::primitive_disable_gc_events() {
227   if (gc_events) {
228     growable_array result(this);
229
230     std::vector<gc_event>* gc_events = this->gc_events;
231     this->gc_events = NULL;
232
233     FACTOR_FOR_EACH(*gc_events) {
234       gc_event event = *iter;
235       byte_array* obj = byte_array_from_value(&event);
236       result.add(tag<byte_array>(obj));
237     }
238
239     result.trim();
240     ctx->push(result.elements.value());
241
242     delete this->gc_events;
243   } else
244     ctx->push(false_object);
245 }
246
247 }