]> gitweb.factorcode.org Git - factor.git/commitdiff
vm: use the ``fmt`` library to fix shortest decimal representation issue.
authorJohn Benediktsson <mrjbq7@gmail.com>
Wed, 7 Feb 2024 18:47:15 +0000 (10:47 -0800)
committerJohn Benediktsson <mrjbq7@gmail.com>
Wed, 7 Feb 2024 18:47:15 +0000 (10:47 -0800)
Before:

    IN: scratchpad 0x1.1ffffffffffffp7 .
    144.0

    IN: scratchpad 0x1.2p7 .
    144.0

    IN: scratchpad 0x1.2000000000001p7 .
    144.0

After:

    IN: scratchpad 0x1.1ffffffffffffp7 .
    143.99999999999997

    IN: scratchpad 0x1.2p7 .
    144.0

    IN: scratchpad 0x1.2000000000001p7 .
    144.00000000000003

Perhaps we should implement the Dragonbox algorithm ourselves at some point.

GNUmakefile
vm/fmt/core.h [new file with mode: 0644]
vm/fmt/format-inl.h [new file with mode: 0644]
vm/fmt/format.h [new file with mode: 0644]
vm/math.cpp

index 36d83ef5d10678fbb63409bbb6a3ac3e67e7417f..e9452fba6d0e6ffe665f6e8d53dfc3e67114421f 100644 (file)
@@ -74,6 +74,7 @@ ifdef CONFIG
                vm/entry_points.o \
                vm/errors.o \
                vm/factor.o \
+               vm/format.o \
                vm/full_collector.o \
                vm/gc.o \
                vm/image.o \
diff --git a/vm/fmt/core.h b/vm/fmt/core.h
new file mode 100644 (file)
index 0000000..b51c140
--- /dev/null
@@ -0,0 +1,2969 @@
+// Formatting library for C++ - the core API for char/UTF-8
+//
+// Copyright (c) 2012 - present, Victor Zverovich
+// All rights reserved.
+//
+// For the license information refer to format.h.
+
+#ifndef FMT_CORE_H_
+#define FMT_CORE_H_
+
+#include <cstddef>  // std::byte
+#include <cstdio>   // std::FILE
+#include <cstring>  // std::strlen
+#include <iterator>
+#include <limits>
+#include <memory>  // std::addressof
+#include <string>
+#include <type_traits>
+
+// The fmt library version in the form major * 10000 + minor * 100 + patch.
+#define FMT_VERSION 100201
+
+#if defined(__clang__) && !defined(__ibmxl__)
+#  define FMT_CLANG_VERSION (__clang_major__ * 100 + __clang_minor__)
+#else
+#  define FMT_CLANG_VERSION 0
+#endif
+
+#if defined(__GNUC__) && !defined(__clang__) && !defined(__INTEL_COMPILER) && \
+    !defined(__NVCOMPILER)
+#  define FMT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
+#else
+#  define FMT_GCC_VERSION 0
+#endif
+
+#ifndef FMT_GCC_PRAGMA
+// Workaround _Pragma bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=59884.
+#  if FMT_GCC_VERSION >= 504
+#    define FMT_GCC_PRAGMA(arg) _Pragma(arg)
+#  else
+#    define FMT_GCC_PRAGMA(arg)
+#  endif
+#endif
+
+#ifdef __ICL
+#  define FMT_ICC_VERSION __ICL
+#elif defined(__INTEL_COMPILER)
+#  define FMT_ICC_VERSION __INTEL_COMPILER
+#else
+#  define FMT_ICC_VERSION 0
+#endif
+
+#ifdef _MSC_VER
+#  define FMT_MSC_VERSION _MSC_VER
+#  define FMT_MSC_WARNING(...) __pragma(warning(__VA_ARGS__))
+#else
+#  define FMT_MSC_VERSION 0
+#  define FMT_MSC_WARNING(...)
+#endif
+
+#ifdef _MSVC_LANG
+#  define FMT_CPLUSPLUS _MSVC_LANG
+#else
+#  define FMT_CPLUSPLUS __cplusplus
+#endif
+
+#ifdef __has_feature
+#  define FMT_HAS_FEATURE(x) __has_feature(x)
+#else
+#  define FMT_HAS_FEATURE(x) 0
+#endif
+
+#if defined(__has_include) || FMT_ICC_VERSION >= 1600 || FMT_MSC_VERSION > 1900
+#  define FMT_HAS_INCLUDE(x) __has_include(x)
+#else
+#  define FMT_HAS_INCLUDE(x) 0
+#endif
+
+#ifdef __has_cpp_attribute
+#  define FMT_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
+#else
+#  define FMT_HAS_CPP_ATTRIBUTE(x) 0
+#endif
+
+#define FMT_HAS_CPP14_ATTRIBUTE(attribute) \
+  (FMT_CPLUSPLUS >= 201402L && FMT_HAS_CPP_ATTRIBUTE(attribute))
+
+#define FMT_HAS_CPP17_ATTRIBUTE(attribute) \
+  (FMT_CPLUSPLUS >= 201703L && FMT_HAS_CPP_ATTRIBUTE(attribute))
+
+// Check if relaxed C++14 constexpr is supported.
+// GCC doesn't allow throw in constexpr until version 6 (bug 67371).
+#ifndef FMT_USE_CONSTEXPR
+#  if (FMT_HAS_FEATURE(cxx_relaxed_constexpr) || FMT_MSC_VERSION >= 1912 || \
+       (FMT_GCC_VERSION >= 600 && FMT_CPLUSPLUS >= 201402L)) &&             \
+      !FMT_ICC_VERSION && (!defined(__NVCC__) || FMT_CPLUSPLUS >= 202002L)
+#    define FMT_USE_CONSTEXPR 1
+#  else
+#    define FMT_USE_CONSTEXPR 0
+#  endif
+#endif
+#if FMT_USE_CONSTEXPR
+#  define FMT_CONSTEXPR constexpr
+#else
+#  define FMT_CONSTEXPR
+#endif
+
+#if (FMT_CPLUSPLUS >= 202002L ||                                \
+     (FMT_CPLUSPLUS >= 201709L && FMT_GCC_VERSION >= 1002)) &&  \
+    ((!defined(_GLIBCXX_RELEASE) || _GLIBCXX_RELEASE >= 10) &&  \
+     (!defined(_LIBCPP_VERSION) || _LIBCPP_VERSION >= 10000) && \
+     (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1928)) &&          \
+    defined(__cpp_lib_is_constant_evaluated)
+#  define FMT_CONSTEXPR20 constexpr
+#else
+#  define FMT_CONSTEXPR20
+#endif
+
+// Check if constexpr std::char_traits<>::{compare,length} are supported.
+#if defined(__GLIBCXX__)
+#  if FMT_CPLUSPLUS >= 201703L && defined(_GLIBCXX_RELEASE) && \
+      _GLIBCXX_RELEASE >= 7  // GCC 7+ libstdc++ has _GLIBCXX_RELEASE.
+#    define FMT_CONSTEXPR_CHAR_TRAITS constexpr
+#  endif
+#elif defined(_LIBCPP_VERSION) && FMT_CPLUSPLUS >= 201703L && \
+    _LIBCPP_VERSION >= 4000
+#  define FMT_CONSTEXPR_CHAR_TRAITS constexpr
+#elif FMT_MSC_VERSION >= 1914 && FMT_CPLUSPLUS >= 201703L
+#  define FMT_CONSTEXPR_CHAR_TRAITS constexpr
+#endif
+#ifndef FMT_CONSTEXPR_CHAR_TRAITS
+#  define FMT_CONSTEXPR_CHAR_TRAITS
+#endif
+
+// Check if exceptions are disabled.
+#ifndef FMT_EXCEPTIONS
+#  if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || \
+      (FMT_MSC_VERSION && !_HAS_EXCEPTIONS)
+#    define FMT_EXCEPTIONS 0
+#  else
+#    define FMT_EXCEPTIONS 1
+#  endif
+#endif
+
+// Disable [[noreturn]] on MSVC/NVCC because of bogus unreachable code warnings.
+#if FMT_EXCEPTIONS && FMT_HAS_CPP_ATTRIBUTE(noreturn) && !FMT_MSC_VERSION && \
+    !defined(__NVCC__)
+#  define FMT_NORETURN [[noreturn]]
+#else
+#  define FMT_NORETURN
+#endif
+
+#ifndef FMT_NODISCARD
+#  if FMT_HAS_CPP17_ATTRIBUTE(nodiscard)
+#    define FMT_NODISCARD [[nodiscard]]
+#  else
+#    define FMT_NODISCARD
+#  endif
+#endif
+
+#ifndef FMT_INLINE
+#  if FMT_GCC_VERSION || FMT_CLANG_VERSION
+#    define FMT_INLINE inline __attribute__((always_inline))
+#  else
+#    define FMT_INLINE inline
+#  endif
+#endif
+
+#ifdef _MSC_VER
+#  define FMT_UNCHECKED_ITERATOR(It) \
+    using _Unchecked_type = It  // Mark iterator as checked.
+#else
+#  define FMT_UNCHECKED_ITERATOR(It) using unchecked_type = It
+#endif
+
+#ifndef FMT_BEGIN_NAMESPACE
+#  define FMT_BEGIN_NAMESPACE \
+    namespace fmt {           \
+    inline namespace v10 {
+#  define FMT_END_NAMESPACE \
+    }                       \
+    }
+#endif
+
+#ifndef FMT_EXPORT
+#  define FMT_EXPORT
+#  define FMT_BEGIN_EXPORT
+#  define FMT_END_EXPORT
+#endif
+
+#if FMT_GCC_VERSION || FMT_CLANG_VERSION
+#  define FMT_VISIBILITY(value) __attribute__((visibility(value)))
+#else
+#  define FMT_VISIBILITY(value)
+#endif
+
+#if !defined(FMT_HEADER_ONLY) && defined(_WIN32)
+#  if defined(FMT_LIB_EXPORT)
+#    define FMT_API __declspec(dllexport)
+#  elif defined(FMT_SHARED)
+#    define FMT_API __declspec(dllimport)
+#  endif
+#elif defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
+#  define FMT_API FMT_VISIBILITY("default")
+#endif
+#ifndef FMT_API
+#  define FMT_API
+#endif
+
+// libc++ supports string_view in pre-c++17.
+#if FMT_HAS_INCLUDE(<string_view>) && \
+    (FMT_CPLUSPLUS >= 201703L || defined(_LIBCPP_VERSION))
+#  include <string_view>
+#  define FMT_USE_STRING_VIEW
+#elif FMT_HAS_INCLUDE("experimental/string_view") && FMT_CPLUSPLUS >= 201402L
+#  include <experimental/string_view>
+#  define FMT_USE_EXPERIMENTAL_STRING_VIEW
+#endif
+
+#ifndef FMT_UNICODE
+#  define FMT_UNICODE !FMT_MSC_VERSION
+#endif
+
+#ifndef FMT_CONSTEVAL
+#  if ((FMT_GCC_VERSION >= 1000 || FMT_CLANG_VERSION >= 1101) && \
+       (!defined(__apple_build_version__) ||                     \
+        __apple_build_version__ >= 14000029L) &&                 \
+       FMT_CPLUSPLUS >= 202002L) ||                              \
+      (defined(__cpp_consteval) &&                               \
+       (!FMT_MSC_VERSION || FMT_MSC_VERSION >= 1929))
+// consteval is broken in MSVC before VS2019 version 16.10 and Apple clang
+// before 14.
+#    define FMT_CONSTEVAL consteval
+#    define FMT_HAS_CONSTEVAL
+#  else
+#    define FMT_CONSTEVAL
+#  endif
+#endif
+
+#ifndef FMT_USE_NONTYPE_TEMPLATE_ARGS
+#  if defined(__cpp_nontype_template_args) &&                  \
+      ((FMT_GCC_VERSION >= 903 && FMT_CPLUSPLUS >= 201709L) || \
+       __cpp_nontype_template_args >= 201911L) &&              \
+      !defined(__NVCOMPILER) && !defined(__LCC__)
+#    define FMT_USE_NONTYPE_TEMPLATE_ARGS 1
+#  else
+#    define FMT_USE_NONTYPE_TEMPLATE_ARGS 0
+#  endif
+#endif
+
+// GCC < 5 requires this-> in decltype
+#ifndef FMT_DECLTYPE_THIS
+#  if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
+#    define FMT_DECLTYPE_THIS this->
+#  else
+#    define FMT_DECLTYPE_THIS
+#  endif
+#endif
+
+// Enable minimal optimizations for more compact code in debug mode.
+FMT_GCC_PRAGMA("GCC push_options")
+#if !defined(__OPTIMIZE__) && !defined(__NVCOMPILER) && !defined(__LCC__) && \
+    !defined(__CUDACC__)
+FMT_GCC_PRAGMA("GCC optimize(\"Og\")")
+#endif
+
+FMT_BEGIN_NAMESPACE
+
+// Implementations of enable_if_t and other metafunctions for older systems.
+template <bool B, typename T = void>
+using enable_if_t = typename std::enable_if<B, T>::type;
+template <bool B, typename T, typename F>
+using conditional_t = typename std::conditional<B, T, F>::type;
+template <bool B> using bool_constant = std::integral_constant<bool, B>;
+template <typename T>
+using remove_reference_t = typename std::remove_reference<T>::type;
+template <typename T>
+using remove_const_t = typename std::remove_const<T>::type;
+template <typename T>
+using remove_cvref_t = typename std::remove_cv<remove_reference_t<T>>::type;
+template <typename T> struct type_identity {
+  using type = T;
+};
+template <typename T> using type_identity_t = typename type_identity<T>::type;
+template <typename T>
+using underlying_t = typename std::underlying_type<T>::type;
+
+// Checks whether T is a container with contiguous storage.
+template <typename T> struct is_contiguous : std::false_type {};
+template <typename Char>
+struct is_contiguous<std::basic_string<Char>> : std::true_type {};
+
+struct monostate {
+  constexpr monostate() {}
+};
+
+// An enable_if helper to be used in template parameters which results in much
+// shorter symbols: https://godbolt.org/z/sWw4vP. Extra parentheses are needed
+// to workaround a bug in MSVC 2019 (see #1140 and #1186).
+#ifdef FMT_DOC
+#  define FMT_ENABLE_IF(...)
+#else
+#  define FMT_ENABLE_IF(...) fmt::enable_if_t<(__VA_ARGS__), int> = 0
+#endif
+
+// This is defined in core.h instead of format.h to avoid injecting in std.
+// It is a template to avoid undesirable implicit conversions to std::byte.
+#ifdef __cpp_lib_byte
+template <typename T, FMT_ENABLE_IF(std::is_same<T, std::byte>::value)>
+inline auto format_as(T b) -> unsigned char {
+  return static_cast<unsigned char>(b);
+}
+#endif
+
+namespace detail {
+// Suppresses "unused variable" warnings with the method described in
+// https://herbsutter.com/2009/10/18/mailbag-shutting-up-compiler-warnings/.
+// (void)var does not work on many Intel compilers.
+template <typename... T> FMT_CONSTEXPR void ignore_unused(const T&...) {}
+
+constexpr FMT_INLINE auto is_constant_evaluated(
+    bool default_value = false) noexcept -> bool {
+// Workaround for incompatibility between libstdc++ consteval-based
+// std::is_constant_evaluated() implementation and clang-14.
+// https://github.com/fmtlib/fmt/issues/3247
+#if FMT_CPLUSPLUS >= 202002L && defined(_GLIBCXX_RELEASE) && \
+    _GLIBCXX_RELEASE >= 12 &&                                \
+    (FMT_CLANG_VERSION >= 1400 && FMT_CLANG_VERSION < 1500)
+  ignore_unused(default_value);
+  return __builtin_is_constant_evaluated();
+#elif defined(__cpp_lib_is_constant_evaluated)
+  ignore_unused(default_value);
+  return std::is_constant_evaluated();
+#else
+  return default_value;
+#endif
+}
+
+// Suppresses "conditional expression is constant" warnings.
+template <typename T> constexpr FMT_INLINE auto const_check(T value) -> T {
+  return value;
+}
+
+FMT_NORETURN FMT_API void assert_fail(const char* file, int line,
+                                      const char* message);
+
+#ifndef FMT_ASSERT
+#  ifdef NDEBUG
+// FMT_ASSERT is not empty to avoid -Wempty-body.
+#    define FMT_ASSERT(condition, message) \
+      fmt::detail::ignore_unused((condition), (message))
+#  else
+#    define FMT_ASSERT(condition, message)                                    \
+      ((condition) /* void() fails with -Winvalid-constexpr on clang 4.0.1 */ \
+           ? (void)0                                                          \
+           : fmt::detail::assert_fail(__FILE__, __LINE__, (message)))
+#  endif
+#endif
+
+#if defined(FMT_USE_STRING_VIEW)
+template <typename Char> using std_string_view = std::basic_string_view<Char>;
+#elif defined(FMT_USE_EXPERIMENTAL_STRING_VIEW)
+template <typename Char>
+using std_string_view = std::experimental::basic_string_view<Char>;
+#else
+template <typename T> struct std_string_view {};
+#endif
+
+#ifdef FMT_USE_INT128
+// Do nothing.
+#elif defined(__SIZEOF_INT128__) && !defined(__NVCC__) && \
+    !(FMT_CLANG_VERSION && FMT_MSC_VERSION)
+#  define FMT_USE_INT128 1
+using int128_opt = __int128_t;  // An optional native 128-bit integer.
+using uint128_opt = __uint128_t;
+template <typename T> inline auto convert_for_visit(T value) -> T {
+  return value;
+}
+#else
+#  define FMT_USE_INT128 0
+#endif
+#if !FMT_USE_INT128
+enum class int128_opt {};
+enum class uint128_opt {};
+// Reduce template instantiations.
+template <typename T> auto convert_for_visit(T) -> monostate { return {}; }
+#endif
+
+// Casts a nonnegative integer to unsigned.
+template <typename Int>
+FMT_CONSTEXPR auto to_unsigned(Int value) ->
+    typename std::make_unsigned<Int>::type {
+  FMT_ASSERT(std::is_unsigned<Int>::value || value >= 0, "negative value");
+  return static_cast<typename std::make_unsigned<Int>::type>(value);
+}
+
+FMT_CONSTEXPR inline auto is_utf8() -> bool {
+  FMT_MSC_WARNING(suppress : 4566) constexpr unsigned char section[] = "\u00A7";
+
+  // Avoid buggy sign extensions in MSVC's constant evaluation mode (#2297).
+  using uchar = unsigned char;
+  return FMT_UNICODE || (sizeof(section) == 3 && uchar(section[0]) == 0xC2 &&
+                         uchar(section[1]) == 0xA7);
+}
+}  // namespace detail
+
+/**
+  An implementation of ``std::basic_string_view`` for pre-C++17. It provides a
+  subset of the API. ``fmt::basic_string_view`` is used for format strings even
+  if ``std::string_view`` is available to prevent issues when a library is
+  compiled with a different ``-std`` option than the client code (which is not
+  recommended).
+ */
+FMT_EXPORT
+template <typename Char> class basic_string_view {
+ private:
+  const Char* data_;
+  size_t size_;
+
+ public:
+  using value_type = Char;
+  using iterator = const Char*;
+
+  constexpr basic_string_view() noexcept : data_(nullptr), size_(0) {}
+
+  /** Constructs a string reference object from a C string and a size. */
+  constexpr basic_string_view(const Char* s, size_t count) noexcept
+      : data_(s), size_(count) {}
+
+  /**
+    \rst
+    Constructs a string reference object from a C string computing
+    the size with ``std::char_traits<Char>::length``.
+    \endrst
+   */
+  FMT_CONSTEXPR_CHAR_TRAITS
+  FMT_INLINE
+  basic_string_view(const Char* s)
+      : data_(s),
+        size_(detail::const_check(std::is_same<Char, char>::value &&
+                                  !detail::is_constant_evaluated(true))
+                  ? std::strlen(reinterpret_cast<const char*>(s))
+                  : std::char_traits<Char>::length(s)) {}
+
+  /** Constructs a string reference from a ``std::basic_string`` object. */
+  template <typename Traits, typename Alloc>
+  FMT_CONSTEXPR basic_string_view(
+      const std::basic_string<Char, Traits, Alloc>& s) noexcept
+      : data_(s.data()), size_(s.size()) {}
+
+  template <typename S, FMT_ENABLE_IF(std::is_same<
+                                      S, detail::std_string_view<Char>>::value)>
+  FMT_CONSTEXPR basic_string_view(S s) noexcept
+      : data_(s.data()), size_(s.size()) {}
+
+  /** Returns a pointer to the string data. */
+  constexpr auto data() const noexcept -> const Char* { return data_; }
+
+  /** Returns the string size. */
+  constexpr auto size() const noexcept -> size_t { return size_; }
+
+  constexpr auto begin() const noexcept -> iterator { return data_; }
+  constexpr auto end() const noexcept -> iterator { return data_ + size_; }
+
+  constexpr auto operator[](size_t pos) const noexcept -> const Char& {
+    return data_[pos];
+  }
+
+  FMT_CONSTEXPR void remove_prefix(size_t n) noexcept {
+    data_ += n;
+    size_ -= n;
+  }
+
+  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(
+      basic_string_view<Char> sv) const noexcept -> bool {
+    return size_ >= sv.size_ &&
+           std::char_traits<Char>::compare(data_, sv.data_, sv.size_) == 0;
+  }
+  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(Char c) const noexcept -> bool {
+    return size_ >= 1 && std::char_traits<Char>::eq(*data_, c);
+  }
+  FMT_CONSTEXPR_CHAR_TRAITS auto starts_with(const Char* s) const -> bool {
+    return starts_with(basic_string_view<Char>(s));
+  }
+
+  // Lexicographically compare this string reference to other.
+  FMT_CONSTEXPR_CHAR_TRAITS auto compare(basic_string_view other) const -> int {
+    size_t str_size = size_ < other.size_ ? size_ : other.size_;
+    int result = std::char_traits<Char>::compare(data_, other.data_, str_size);
+    if (result == 0)
+      result = size_ == other.size_ ? 0 : (size_ < other.size_ ? -1 : 1);
+    return result;
+  }
+
+  FMT_CONSTEXPR_CHAR_TRAITS friend auto operator==(basic_string_view lhs,
+                                                   basic_string_view rhs)
+      -> bool {
+    return lhs.compare(rhs) == 0;
+  }
+  friend auto operator!=(basic_string_view lhs, basic_string_view rhs) -> bool {
+    return lhs.compare(rhs) != 0;
+  }
+  friend auto operator<(basic_string_view lhs, basic_string_view rhs) -> bool {
+    return lhs.compare(rhs) < 0;
+  }
+  friend auto operator<=(basic_string_view lhs, basic_string_view rhs) -> bool {
+    return lhs.compare(rhs) <= 0;
+  }
+  friend auto operator>(basic_string_view lhs, basic_string_view rhs) -> bool {
+    return lhs.compare(rhs) > 0;
+  }
+  friend auto operator>=(basic_string_view lhs, basic_string_view rhs) -> bool {
+    return lhs.compare(rhs) >= 0;
+  }
+};
+
+FMT_EXPORT
+using string_view = basic_string_view<char>;
+
+/** Specifies if ``T`` is a character type. Can be specialized by users. */
+FMT_EXPORT
+template <typename T> struct is_char : std::false_type {};
+template <> struct is_char<char> : std::true_type {};
+
+namespace detail {
+
+// A base class for compile-time strings.
+struct compile_string {};
+
+template <typename S>
+struct is_compile_string : std::is_base_of<compile_string, S> {};
+
+template <typename Char, FMT_ENABLE_IF(is_char<Char>::value)>
+FMT_INLINE auto to_string_view(const Char* s) -> basic_string_view<Char> {
+  return s;
+}
+template <typename Char, typename Traits, typename Alloc>
+inline auto to_string_view(const std::basic_string<Char, Traits, Alloc>& s)
+    -> basic_string_view<Char> {
+  return s;
+}
+template <typename Char>
+constexpr auto to_string_view(basic_string_view<Char> s)
+    -> basic_string_view<Char> {
+  return s;
+}
+template <typename Char,
+          FMT_ENABLE_IF(!std::is_empty<std_string_view<Char>>::value)>
+inline auto to_string_view(std_string_view<Char> s) -> basic_string_view<Char> {
+  return s;
+}
+template <typename S, FMT_ENABLE_IF(is_compile_string<S>::value)>
+constexpr auto to_string_view(const S& s)
+    -> basic_string_view<typename S::char_type> {
+  return basic_string_view<typename S::char_type>(s);
+}
+void to_string_view(...);
+
+// Specifies whether S is a string type convertible to fmt::basic_string_view.
+// It should be a constexpr function but MSVC 2017 fails to compile it in
+// enable_if and MSVC 2015 fails to compile it as an alias template.
+// ADL is intentionally disabled as to_string_view is not an extension point.
+template <typename S>
+struct is_string
+    : std::is_class<decltype(detail::to_string_view(std::declval<S>()))> {};
+
+template <typename S, typename = void> struct char_t_impl {};
+template <typename S> struct char_t_impl<S, enable_if_t<is_string<S>::value>> {
+  using result = decltype(to_string_view(std::declval<S>()));
+  using type = typename result::value_type;
+};
+
+enum class type {
+  none_type,
+  // Integer types should go first,
+  int_type,
+  uint_type,
+  long_long_type,
+  ulong_long_type,
+  int128_type,
+  uint128_type,
+  bool_type,
+  char_type,
+  last_integer_type = char_type,
+  // followed by floating-point types.
+  float_type,
+  double_type,
+  long_double_type,
+  last_numeric_type = long_double_type,
+  cstring_type,
+  string_type,
+  pointer_type,
+  custom_type
+};
+
+// Maps core type T to the corresponding type enum constant.
+template <typename T, typename Char>
+struct type_constant : std::integral_constant<type, type::custom_type> {};
+
+#define FMT_TYPE_CONSTANT(Type, constant) \
+  template <typename Char>                \
+  struct type_constant<Type, Char>        \
+      : std::integral_constant<type, type::constant> {}
+
+FMT_TYPE_CONSTANT(int, int_type);
+FMT_TYPE_CONSTANT(unsigned, uint_type);
+FMT_TYPE_CONSTANT(long long, long_long_type);
+FMT_TYPE_CONSTANT(unsigned long long, ulong_long_type);
+FMT_TYPE_CONSTANT(int128_opt, int128_type);
+FMT_TYPE_CONSTANT(uint128_opt, uint128_type);
+FMT_TYPE_CONSTANT(bool, bool_type);
+FMT_TYPE_CONSTANT(Char, char_type);
+FMT_TYPE_CONSTANT(float, float_type);
+FMT_TYPE_CONSTANT(double, double_type);
+FMT_TYPE_CONSTANT(long double, long_double_type);
+FMT_TYPE_CONSTANT(const Char*, cstring_type);
+FMT_TYPE_CONSTANT(basic_string_view<Char>, string_type);
+FMT_TYPE_CONSTANT(const void*, pointer_type);
+
+constexpr auto is_integral_type(type t) -> bool {
+  return t > type::none_type && t <= type::last_integer_type;
+}
+constexpr auto is_arithmetic_type(type t) -> bool {
+  return t > type::none_type && t <= type::last_numeric_type;
+}
+
+constexpr auto set(type rhs) -> int { return 1 << static_cast<int>(rhs); }
+constexpr auto in(type t, int set) -> bool {
+  return ((set >> static_cast<int>(t)) & 1) != 0;
+}
+
+// Bitsets of types.
+enum {
+  sint_set =
+      set(type::int_type) | set(type::long_long_type) | set(type::int128_type),
+  uint_set = set(type::uint_type) | set(type::ulong_long_type) |
+             set(type::uint128_type),
+  bool_set = set(type::bool_type),
+  char_set = set(type::char_type),
+  float_set = set(type::float_type) | set(type::double_type) |
+              set(type::long_double_type),
+  string_set = set(type::string_type),
+  cstring_set = set(type::cstring_type),
+  pointer_set = set(type::pointer_type)
+};
+
+// DEPRECATED!
+FMT_NORETURN FMT_API void throw_format_error(const char* message);
+
+struct error_handler {
+  constexpr error_handler() = default;
+
+  // This function is intentionally not constexpr to give a compile-time error.
+  FMT_NORETURN void on_error(const char* message) {
+    throw_format_error(message);
+  }
+};
+}  // namespace detail
+
+/** Throws ``format_error`` with a given message. */
+using detail::throw_format_error;
+
+/** String's character type. */
+template <typename S> using char_t = typename detail::char_t_impl<S>::type;
+
+/**
+  \rst
+  Parsing context consisting of a format string range being parsed and an
+  argument counter for automatic indexing.
+  You can use the ``format_parse_context`` type alias for ``char`` instead.
+  \endrst
+ */
+FMT_EXPORT
+template <typename Char> class basic_format_parse_context {
+ private:
+  basic_string_view<Char> format_str_;
+  int next_arg_id_;
+
+  FMT_CONSTEXPR void do_check_arg_id(int id);
+
+ public:
+  using char_type = Char;
+  using iterator = const Char*;
+
+  explicit constexpr basic_format_parse_context(
+      basic_string_view<Char> format_str, int next_arg_id = 0)
+      : format_str_(format_str), next_arg_id_(next_arg_id) {}
+
+  /**
+    Returns an iterator to the beginning of the format string range being
+    parsed.
+   */
+  constexpr auto begin() const noexcept -> iterator {
+    return format_str_.begin();
+  }
+
+  /**
+    Returns an iterator past the end of the format string range being parsed.
+   */
+  constexpr auto end() const noexcept -> iterator { return format_str_.end(); }
+
+  /** Advances the begin iterator to ``it``. */
+  FMT_CONSTEXPR void advance_to(iterator it) {
+    format_str_.remove_prefix(detail::to_unsigned(it - begin()));
+  }
+
+  /**
+    Reports an error if using the manual argument indexing; otherwise returns
+    the next argument index and switches to the automatic indexing.
+   */
+  FMT_CONSTEXPR auto next_arg_id() -> int {
+    if (next_arg_id_ < 0) {
+      detail::throw_format_error(
+          "cannot switch from manual to automatic argument indexing");
+      return 0;
+    }
+    int id = next_arg_id_++;
+    do_check_arg_id(id);
+    return id;
+  }
+
+  /**
+    Reports an error if using the automatic argument indexing; otherwise
+    switches to the manual indexing.
+   */
+  FMT_CONSTEXPR void check_arg_id(int id) {
+    if (next_arg_id_ > 0) {
+      detail::throw_format_error(
+          "cannot switch from automatic to manual argument indexing");
+      return;
+    }
+    next_arg_id_ = -1;
+    do_check_arg_id(id);
+  }
+  FMT_CONSTEXPR void check_arg_id(basic_string_view<Char>) {}
+  FMT_CONSTEXPR void check_dynamic_spec(int arg_id);
+};
+
+FMT_EXPORT
+using format_parse_context = basic_format_parse_context<char>;
+
+namespace detail {
+// A parse context with extra data used only in compile-time checks.
+template <typename Char>
+class compile_parse_context : public basic_format_parse_context<Char> {
+ private:
+  int num_args_;
+  const type* types_;
+  using base = basic_format_parse_context<Char>;
+
+ public:
+  explicit FMT_CONSTEXPR compile_parse_context(
+      basic_string_view<Char> format_str, int num_args, const type* types,
+      int next_arg_id = 0)
+      : base(format_str, next_arg_id), num_args_(num_args), types_(types) {}
+
+  constexpr auto num_args() const -> int { return num_args_; }
+  constexpr auto arg_type(int id) const -> type { return types_[id]; }
+
+  FMT_CONSTEXPR auto next_arg_id() -> int {
+    int id = base::next_arg_id();
+    if (id >= num_args_) throw_format_error("argument not found");
+    return id;
+  }
+
+  FMT_CONSTEXPR void check_arg_id(int id) {
+    base::check_arg_id(id);
+    if (id >= num_args_) throw_format_error("argument not found");
+  }
+  using base::check_arg_id;
+
+  FMT_CONSTEXPR void check_dynamic_spec(int arg_id) {
+    detail::ignore_unused(arg_id);
+#if !defined(__LCC__)
+    if (arg_id < num_args_ && types_ && !is_integral_type(types_[arg_id]))
+      throw_format_error("width/precision is not integer");
+#endif
+  }
+};
+
+// Extracts a reference to the container from back_insert_iterator.
+template <typename Container>
+inline auto get_container(std::back_insert_iterator<Container> it)
+    -> Container& {
+  using base = std::back_insert_iterator<Container>;
+  struct accessor : base {
+    accessor(base b) : base(b) {}
+    using base::container;
+  };
+  return *accessor(it).container;
+}
+
+template <typename Char, typename InputIt, typename OutputIt>
+FMT_CONSTEXPR auto copy_str(InputIt begin, InputIt end, OutputIt out)
+    -> OutputIt {
+  while (begin != end) *out++ = static_cast<Char>(*begin++);
+  return out;
+}
+
+template <typename Char, typename T, typename U,
+          FMT_ENABLE_IF(
+              std::is_same<remove_const_t<T>, U>::value&& is_char<U>::value)>
+FMT_CONSTEXPR auto copy_str(T* begin, T* end, U* out) -> U* {
+  if (is_constant_evaluated()) return copy_str<Char, T*, U*>(begin, end, out);
+  auto size = to_unsigned(end - begin);
+  if (size > 0) memcpy(out, begin, size * sizeof(U));
+  return out + size;
+}
+
+/**
+  \rst
+  A contiguous memory buffer with an optional growing ability. It is an internal
+  class and shouldn't be used directly, only via `~fmt::basic_memory_buffer`.
+  \endrst
+ */
+template <typename T> class buffer {
+ private:
+  T* ptr_;
+  size_t size_;
+  size_t capacity_;
+
+ protected:
+  // Don't initialize ptr_ since it is not accessed to save a few cycles.
+  FMT_MSC_WARNING(suppress : 26495)
+  FMT_CONSTEXPR buffer(size_t sz) noexcept : size_(sz), capacity_(sz) {}
+
+  FMT_CONSTEXPR20 buffer(T* p = nullptr, size_t sz = 0, size_t cap = 0) noexcept
+      : ptr_(p), size_(sz), capacity_(cap) {}
+
+  FMT_CONSTEXPR20 ~buffer() = default;
+  buffer(buffer&&) = default;
+
+  /** Sets the buffer data and capacity. */
+  FMT_CONSTEXPR void set(T* buf_data, size_t buf_capacity) noexcept {
+    ptr_ = buf_data;
+    capacity_ = buf_capacity;
+  }
+
+  /** Increases the buffer capacity to hold at least *capacity* elements. */
+  // DEPRECATED!
+  virtual FMT_CONSTEXPR20 void grow(size_t capacity) = 0;
+
+ public:
+  using value_type = T;
+  using const_reference = const T&;
+
+  buffer(const buffer&) = delete;
+  void operator=(const buffer&) = delete;
+
+  FMT_INLINE auto begin() noexcept -> T* { return ptr_; }
+  FMT_INLINE auto end() noexcept -> T* { return ptr_ + size_; }
+
+  FMT_INLINE auto begin() const noexcept -> const T* { return ptr_; }
+  FMT_INLINE auto end() const noexcept -> const T* { return ptr_ + size_; }
+
+  /** Returns the size of this buffer. */
+  constexpr auto size() const noexcept -> size_t { return size_; }
+
+  /** Returns the capacity of this buffer. */
+  constexpr auto capacity() const noexcept -> size_t { return capacity_; }
+
+  /** Returns a pointer to the buffer data (not null-terminated). */
+  FMT_CONSTEXPR auto data() noexcept -> T* { return ptr_; }
+  FMT_CONSTEXPR auto data() const noexcept -> const T* { return ptr_; }
+
+  /** Clears this buffer. */
+  void clear() { size_ = 0; }
+
+  // Tries resizing the buffer to contain *count* elements. If T is a POD type
+  // the new elements may not be initialized.
+  FMT_CONSTEXPR20 void try_resize(size_t count) {
+    try_reserve(count);
+    size_ = count <= capacity_ ? count : capacity_;
+  }
+
+  // Tries increasing the buffer capacity to *new_capacity*. It can increase the
+  // capacity by a smaller amount than requested but guarantees there is space
+  // for at least one additional element either by increasing the capacity or by
+  // flushing the buffer if it is full.
+  FMT_CONSTEXPR20 void try_reserve(size_t new_capacity) {
+    if (new_capacity > capacity_) grow(new_capacity);
+  }
+
+  FMT_CONSTEXPR20 void push_back(const T& value) {
+    try_reserve(size_ + 1);
+    ptr_[size_++] = value;
+  }
+
+  /** Appends data to the end of the buffer. */
+  template <typename U> void append(const U* begin, const U* end);
+
+  template <typename Idx> FMT_CONSTEXPR auto operator[](Idx index) -> T& {
+    return ptr_[index];
+  }
+  template <typename Idx>
+  FMT_CONSTEXPR auto operator[](Idx index) const -> const T& {
+    return ptr_[index];
+  }
+};
+
+struct buffer_traits {
+  explicit buffer_traits(size_t) {}
+  auto count() const -> size_t { return 0; }
+  auto limit(size_t size) -> size_t { return size; }
+};
+
+class fixed_buffer_traits {
+ private:
+  size_t count_ = 0;
+  size_t limit_;
+
+ public:
+  explicit fixed_buffer_traits(size_t limit) : limit_(limit) {}
+  auto count() const -> size_t { return count_; }
+  auto limit(size_t size) -> size_t {
+    size_t n = limit_ > count_ ? limit_ - count_ : 0;
+    count_ += size;
+    return size < n ? size : n;
+  }
+};
+
+// A buffer that writes to an output iterator when flushed.
+template <typename OutputIt, typename T, typename Traits = buffer_traits>
+class iterator_buffer final : public Traits, public buffer<T> {
+ private:
+  OutputIt out_;
+  enum { buffer_size = 256 };
+  T data_[buffer_size];
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t) override {
+    if (this->size() == buffer_size) flush();
+  }
+
+  void flush() {
+    auto size = this->size();
+    this->clear();
+    out_ = copy_str<T>(data_, data_ + this->limit(size), out_);
+  }
+
+ public:
+  explicit iterator_buffer(OutputIt out, size_t n = buffer_size)
+      : Traits(n), buffer<T>(data_, 0, buffer_size), out_(out) {}
+  iterator_buffer(iterator_buffer&& other)
+      : Traits(other), buffer<T>(data_, 0, buffer_size), out_(other.out_) {}
+  ~iterator_buffer() { flush(); }
+
+  auto out() -> OutputIt {
+    flush();
+    return out_;
+  }
+  auto count() const -> size_t { return Traits::count() + this->size(); }
+};
+
+template <typename T>
+class iterator_buffer<T*, T, fixed_buffer_traits> final
+    : public fixed_buffer_traits,
+      public buffer<T> {
+ private:
+  T* out_;
+  enum { buffer_size = 256 };
+  T data_[buffer_size];
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t) override {
+    if (this->size() == this->capacity()) flush();
+  }
+
+  void flush() {
+    size_t n = this->limit(this->size());
+    if (this->data() == out_) {
+      out_ += n;
+      this->set(data_, buffer_size);
+    }
+    this->clear();
+  }
+
+ public:
+  explicit iterator_buffer(T* out, size_t n = buffer_size)
+      : fixed_buffer_traits(n), buffer<T>(out, 0, n), out_(out) {}
+  iterator_buffer(iterator_buffer&& other)
+      : fixed_buffer_traits(other),
+        buffer<T>(std::move(other)),
+        out_(other.out_) {
+    if (this->data() != out_) {
+      this->set(data_, buffer_size);
+      this->clear();
+    }
+  }
+  ~iterator_buffer() { flush(); }
+
+  auto out() -> T* {
+    flush();
+    return out_;
+  }
+  auto count() const -> size_t {
+    return fixed_buffer_traits::count() + this->size();
+  }
+};
+
+template <typename T> class iterator_buffer<T*, T> final : public buffer<T> {
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t) override {}
+
+ public:
+  explicit iterator_buffer(T* out, size_t = 0) : buffer<T>(out, 0, ~size_t()) {}
+
+  auto out() -> T* { return &*this->end(); }
+};
+
+// A buffer that writes to a container with the contiguous storage.
+template <typename Container>
+class iterator_buffer<std::back_insert_iterator<Container>,
+                      enable_if_t<is_contiguous<Container>::value,
+                                  typename Container::value_type>>
+    final : public buffer<typename Container::value_type> {
+ private:
+  Container& container_;
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t capacity) override {
+    container_.resize(capacity);
+    this->set(&container_[0], capacity);
+  }
+
+ public:
+  explicit iterator_buffer(Container& c)
+      : buffer<typename Container::value_type>(c.size()), container_(c) {}
+  explicit iterator_buffer(std::back_insert_iterator<Container> out, size_t = 0)
+      : iterator_buffer(get_container(out)) {}
+
+  auto out() -> std::back_insert_iterator<Container> {
+    return std::back_inserter(container_);
+  }
+};
+
+// A buffer that counts the number of code units written discarding the output.
+template <typename T = char> class counting_buffer final : public buffer<T> {
+ private:
+  enum { buffer_size = 256 };
+  T data_[buffer_size];
+  size_t count_ = 0;
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t) override {
+    if (this->size() != buffer_size) return;
+    count_ += this->size();
+    this->clear();
+  }
+
+ public:
+  counting_buffer() : buffer<T>(data_, 0, buffer_size) {}
+
+  auto count() -> size_t { return count_ + this->size(); }
+};
+}  // namespace detail
+
+template <typename Char>
+FMT_CONSTEXPR void basic_format_parse_context<Char>::do_check_arg_id(int id) {
+  // Argument id is only checked at compile-time during parsing because
+  // formatting has its own validation.
+  if (detail::is_constant_evaluated() &&
+      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
+    using context = detail::compile_parse_context<Char>;
+    if (id >= static_cast<context*>(this)->num_args())
+      detail::throw_format_error("argument not found");
+  }
+}
+
+template <typename Char>
+FMT_CONSTEXPR void basic_format_parse_context<Char>::check_dynamic_spec(
+    int arg_id) {
+  if (detail::is_constant_evaluated() &&
+      (!FMT_GCC_VERSION || FMT_GCC_VERSION >= 1200)) {
+    using context = detail::compile_parse_context<Char>;
+    static_cast<context*>(this)->check_dynamic_spec(arg_id);
+  }
+}
+
+FMT_EXPORT template <typename Context> class basic_format_arg;
+FMT_EXPORT template <typename Context> class basic_format_args;
+FMT_EXPORT template <typename Context> class dynamic_format_arg_store;
+
+// A formatter for objects of type T.
+FMT_EXPORT
+template <typename T, typename Char = char, typename Enable = void>
+struct formatter {
+  // A deleted default constructor indicates a disabled formatter.
+  formatter() = delete;
+};
+
+// Specifies if T has an enabled formatter specialization. A type can be
+// formattable even if it doesn't have a formatter e.g. via a conversion.
+template <typename T, typename Context>
+using has_formatter =
+    std::is_constructible<typename Context::template formatter_type<T>>;
+
+// An output iterator that appends to a buffer.
+// It is used to reduce symbol sizes for the common case.
+class appender : public std::back_insert_iterator<detail::buffer<char>> {
+  using base = std::back_insert_iterator<detail::buffer<char>>;
+
+ public:
+  using std::back_insert_iterator<detail::buffer<char>>::back_insert_iterator;
+  appender(base it) noexcept : base(it) {}
+  FMT_UNCHECKED_ITERATOR(appender);
+
+  auto operator++() noexcept -> appender& { return *this; }
+  auto operator++(int) noexcept -> appender { return *this; }
+};
+
+namespace detail {
+
+template <typename Context, typename T>
+constexpr auto has_const_formatter_impl(T*)
+    -> decltype(typename Context::template formatter_type<T>().format(
+                    std::declval<const T&>(), std::declval<Context&>()),
+                true) {
+  return true;
+}
+template <typename Context>
+constexpr auto has_const_formatter_impl(...) -> bool {
+  return false;
+}
+template <typename T, typename Context>
+constexpr auto has_const_formatter() -> bool {
+  return has_const_formatter_impl<Context>(static_cast<T*>(nullptr));
+}
+
+template <typename T>
+using buffer_appender = conditional_t<std::is_same<T, char>::value, appender,
+                                      std::back_insert_iterator<buffer<T>>>;
+
+// Maps an output iterator to a buffer.
+template <typename T, typename OutputIt>
+auto get_buffer(OutputIt out) -> iterator_buffer<OutputIt, T> {
+  return iterator_buffer<OutputIt, T>(out);
+}
+template <typename T, typename Buf,
+          FMT_ENABLE_IF(std::is_base_of<buffer<char>, Buf>::value)>
+auto get_buffer(std::back_insert_iterator<Buf> out) -> buffer<char>& {
+  return get_container(out);
+}
+
+template <typename Buf, typename OutputIt>
+FMT_INLINE auto get_iterator(Buf& buf, OutputIt) -> decltype(buf.out()) {
+  return buf.out();
+}
+template <typename T, typename OutputIt>
+auto get_iterator(buffer<T>&, OutputIt out) -> OutputIt {
+  return out;
+}
+
+struct view {};
+
+template <typename Char, typename T> struct named_arg : view {
+  const Char* name;
+  const T& value;
+  named_arg(const Char* n, const T& v) : name(n), value(v) {}
+};
+
+template <typename Char> struct named_arg_info {
+  const Char* name;
+  int id;
+};
+
+template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
+struct arg_data {
+  // args_[0].named_args points to named_args_ to avoid bloating format_args.
+  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
+  T args_[1 + (NUM_ARGS != 0 ? NUM_ARGS : +1)];
+  named_arg_info<Char> named_args_[NUM_NAMED_ARGS];
+
+  template <typename... U>
+  arg_data(const U&... init) : args_{T(named_args_, NUM_NAMED_ARGS), init...} {}
+  arg_data(const arg_data& other) = delete;
+  auto args() const -> const T* { return args_ + 1; }
+  auto named_args() -> named_arg_info<Char>* { return named_args_; }
+};
+
+template <typename T, typename Char, size_t NUM_ARGS>
+struct arg_data<T, Char, NUM_ARGS, 0> {
+  // +1 to workaround a bug in gcc 7.5 that causes duplicated-branches warning.
+  T args_[NUM_ARGS != 0 ? NUM_ARGS : +1];
+
+  template <typename... U>
+  FMT_CONSTEXPR FMT_INLINE arg_data(const U&... init) : args_{init...} {}
+  FMT_CONSTEXPR FMT_INLINE auto args() const -> const T* { return args_; }
+  FMT_CONSTEXPR FMT_INLINE auto named_args() -> std::nullptr_t {
+    return nullptr;
+  }
+};
+
+template <typename Char>
+inline void init_named_args(named_arg_info<Char>*, int, int) {}
+
+template <typename T> struct is_named_arg : std::false_type {};
+template <typename T> struct is_statically_named_arg : std::false_type {};
+
+template <typename T, typename Char>
+struct is_named_arg<named_arg<Char, T>> : std::true_type {};
+
+template <typename Char, typename T, typename... Tail,
+          FMT_ENABLE_IF(!is_named_arg<T>::value)>
+void init_named_args(named_arg_info<Char>* named_args, int arg_count,
+                     int named_arg_count, const T&, const Tail&... args) {
+  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
+}
+
+template <typename Char, typename T, typename... Tail,
+          FMT_ENABLE_IF(is_named_arg<T>::value)>
+void init_named_args(named_arg_info<Char>* named_args, int arg_count,
+                     int named_arg_count, const T& arg, const Tail&... args) {
+  named_args[named_arg_count++] = {arg.name, arg_count};
+  init_named_args(named_args, arg_count + 1, named_arg_count, args...);
+}
+
+template <typename... Args>
+FMT_CONSTEXPR FMT_INLINE void init_named_args(std::nullptr_t, int, int,
+                                              const Args&...) {}
+
+template <bool B = false> constexpr auto count() -> size_t { return B ? 1 : 0; }
+template <bool B1, bool B2, bool... Tail> constexpr auto count() -> size_t {
+  return (B1 ? 1 : 0) + count<B2, Tail...>();
+}
+
+template <typename... Args> constexpr auto count_named_args() -> size_t {
+  return count<is_named_arg<Args>::value...>();
+}
+
+template <typename... Args>
+constexpr auto count_statically_named_args() -> size_t {
+  return count<is_statically_named_arg<Args>::value...>();
+}
+
+struct unformattable {};
+struct unformattable_char : unformattable {};
+struct unformattable_pointer : unformattable {};
+
+template <typename Char> struct string_value {
+  const Char* data;
+  size_t size;
+};
+
+template <typename Char> struct named_arg_value {
+  const named_arg_info<Char>* data;
+  size_t size;
+};
+
+template <typename Context> struct custom_value {
+  using parse_context = typename Context::parse_context_type;
+  void* value;
+  void (*format)(void* arg, parse_context& parse_ctx, Context& ctx);
+};
+
+// A formatting argument value.
+template <typename Context> class value {
+ public:
+  using char_type = typename Context::char_type;
+
+  union {
+    monostate no_value;
+    int int_value;
+    unsigned uint_value;
+    long long long_long_value;
+    unsigned long long ulong_long_value;
+    int128_opt int128_value;
+    uint128_opt uint128_value;
+    bool bool_value;
+    char_type char_value;
+    float float_value;
+    double double_value;
+    long double long_double_value;
+    const void* pointer;
+    string_value<char_type> string;
+    custom_value<Context> custom;
+    named_arg_value<char_type> named_args;
+  };
+
+  constexpr FMT_INLINE value() : no_value() {}
+  constexpr FMT_INLINE value(int val) : int_value(val) {}
+  constexpr FMT_INLINE value(unsigned val) : uint_value(val) {}
+  constexpr FMT_INLINE value(long long val) : long_long_value(val) {}
+  constexpr FMT_INLINE value(unsigned long long val) : ulong_long_value(val) {}
+  FMT_INLINE value(int128_opt val) : int128_value(val) {}
+  FMT_INLINE value(uint128_opt val) : uint128_value(val) {}
+  constexpr FMT_INLINE value(float val) : float_value(val) {}
+  constexpr FMT_INLINE value(double val) : double_value(val) {}
+  FMT_INLINE value(long double val) : long_double_value(val) {}
+  constexpr FMT_INLINE value(bool val) : bool_value(val) {}
+  constexpr FMT_INLINE value(char_type val) : char_value(val) {}
+  FMT_CONSTEXPR FMT_INLINE value(const char_type* val) {
+    string.data = val;
+    if (is_constant_evaluated()) string.size = {};
+  }
+  FMT_CONSTEXPR FMT_INLINE value(basic_string_view<char_type> val) {
+    string.data = val.data();
+    string.size = val.size();
+  }
+  FMT_INLINE value(const void* val) : pointer(val) {}
+  FMT_INLINE value(const named_arg_info<char_type>* args, size_t size)
+      : named_args{args, size} {}
+
+  template <typename T> FMT_CONSTEXPR20 FMT_INLINE value(T& val) {
+    using value_type = remove_const_t<T>;
+    custom.value = const_cast<value_type*>(std::addressof(val));
+    // Get the formatter type through the context to allow different contexts
+    // have different extension points, e.g. `formatter<T>` for `format` and
+    // `printf_formatter<T>` for `printf`.
+    custom.format = format_custom_arg<
+        value_type, typename Context::template formatter_type<value_type>>;
+  }
+  value(unformattable);
+  value(unformattable_char);
+  value(unformattable_pointer);
+
+ private:
+  // Formats an argument of a custom type, such as a user-defined class.
+  template <typename T, typename Formatter>
+  static void format_custom_arg(void* arg,
+                                typename Context::parse_context_type& parse_ctx,
+                                Context& ctx) {
+    auto f = Formatter();
+    parse_ctx.advance_to(f.parse(parse_ctx));
+    using qualified_type =
+        conditional_t<has_const_formatter<T, Context>(), const T, T>;
+    // Calling format through a mutable reference is deprecated.
+    ctx.advance_to(f.format(*static_cast<qualified_type*>(arg), ctx));
+  }
+};
+
+// To minimize the number of types we need to deal with, long is translated
+// either to int or to long long depending on its size.
+enum { long_short = sizeof(long) == sizeof(int) };
+using long_type = conditional_t<long_short, int, long long>;
+using ulong_type = conditional_t<long_short, unsigned, unsigned long long>;
+
+template <typename T> struct format_as_result {
+  template <typename U,
+            FMT_ENABLE_IF(std::is_enum<U>::value || std::is_class<U>::value)>
+  static auto map(U*) -> remove_cvref_t<decltype(format_as(std::declval<U>()))>;
+  static auto map(...) -> void;
+
+  using type = decltype(map(static_cast<T*>(nullptr)));
+};
+template <typename T> using format_as_t = typename format_as_result<T>::type;
+
+template <typename T>
+struct has_format_as
+    : bool_constant<!std::is_same<format_as_t<T>, void>::value> {};
+
+// Maps formatting arguments to core types.
+// arg_mapper reports errors by returning unformattable instead of using
+// static_assert because it's used in the is_formattable trait.
+template <typename Context> struct arg_mapper {
+  using char_type = typename Context::char_type;
+
+  FMT_CONSTEXPR FMT_INLINE auto map(signed char val) -> int { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(unsigned char val) -> unsigned {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(short val) -> int { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(unsigned short val) -> unsigned {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(int val) -> int { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(unsigned val) -> unsigned { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(long val) -> long_type { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(unsigned long val) -> ulong_type {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(long long val) -> long long { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(unsigned long long val)
+      -> unsigned long long {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(int128_opt val) -> int128_opt {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(uint128_opt val) -> uint128_opt {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(bool val) -> bool { return val; }
+
+  template <typename T, FMT_ENABLE_IF(std::is_same<T, char>::value ||
+                                      std::is_same<T, char_type>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(T val) -> char_type {
+    return val;
+  }
+  template <typename T, enable_if_t<(std::is_same<T, wchar_t>::value ||
+#ifdef __cpp_char8_t
+                                     std::is_same<T, char8_t>::value ||
+#endif
+                                     std::is_same<T, char16_t>::value ||
+                                     std::is_same<T, char32_t>::value) &&
+                                        !std::is_same<T, char_type>::value,
+                                    int> = 0>
+  FMT_CONSTEXPR FMT_INLINE auto map(T) -> unformattable_char {
+    return {};
+  }
+
+  FMT_CONSTEXPR FMT_INLINE auto map(float val) -> float { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(double val) -> double { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(long double val) -> long double {
+    return val;
+  }
+
+  FMT_CONSTEXPR FMT_INLINE auto map(char_type* val) -> const char_type* {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(const char_type* val) -> const char_type* {
+    return val;
+  }
+  template <typename T,
+            FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value &&
+                          std::is_same<char_type, char_t<T>>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
+      -> basic_string_view<char_type> {
+    return to_string_view(val);
+  }
+  template <typename T,
+            FMT_ENABLE_IF(is_string<T>::value && !std::is_pointer<T>::value &&
+                          !std::is_same<char_type, char_t<T>>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(const T&) -> unformattable_char {
+    return {};
+  }
+
+  FMT_CONSTEXPR FMT_INLINE auto map(void* val) -> const void* { return val; }
+  FMT_CONSTEXPR FMT_INLINE auto map(const void* val) -> const void* {
+    return val;
+  }
+  FMT_CONSTEXPR FMT_INLINE auto map(std::nullptr_t val) -> const void* {
+    return val;
+  }
+
+  // Use SFINAE instead of a const T* parameter to avoid a conflict with the
+  // array overload.
+  template <
+      typename T,
+      FMT_ENABLE_IF(
+          std::is_pointer<T>::value || std::is_member_pointer<T>::value ||
+          std::is_function<typename std::remove_pointer<T>::type>::value ||
+          (std::is_array<T>::value &&
+           !std::is_convertible<T, const char_type*>::value))>
+  FMT_CONSTEXPR auto map(const T&) -> unformattable_pointer {
+    return {};
+  }
+
+  template <typename T, std::size_t N,
+            FMT_ENABLE_IF(!std::is_same<T, wchar_t>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(const T (&values)[N]) -> const T (&)[N] {
+    return values;
+  }
+
+  // Only map owning types because mapping views can be unsafe.
+  template <typename T, typename U = format_as_t<T>,
+            FMT_ENABLE_IF(std::is_arithmetic<U>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(const T& val)
+      -> decltype(FMT_DECLTYPE_THIS map(U())) {
+    return map(format_as(val));
+  }
+
+  template <typename T, typename U = remove_const_t<T>>
+  struct formattable : bool_constant<has_const_formatter<U, Context>() ||
+                                     (has_formatter<U, Context>::value &&
+                                      !std::is_const<T>::value)> {};
+
+  template <typename T, FMT_ENABLE_IF(formattable<T>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto do_map(T& val) -> T& {
+    return val;
+  }
+  template <typename T, FMT_ENABLE_IF(!formattable<T>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto do_map(T&) -> unformattable {
+    return {};
+  }
+
+  template <typename T, typename U = remove_const_t<T>,
+            FMT_ENABLE_IF((std::is_class<U>::value || std::is_enum<U>::value ||
+                           std::is_union<U>::value) &&
+                          !is_string<U>::value && !is_char<U>::value &&
+                          !is_named_arg<U>::value &&
+                          !std::is_arithmetic<format_as_t<U>>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(T& val)
+      -> decltype(FMT_DECLTYPE_THIS do_map(val)) {
+    return do_map(val);
+  }
+
+  template <typename T, FMT_ENABLE_IF(is_named_arg<T>::value)>
+  FMT_CONSTEXPR FMT_INLINE auto map(const T& named_arg)
+      -> decltype(FMT_DECLTYPE_THIS map(named_arg.value)) {
+    return map(named_arg.value);
+  }
+
+  auto map(...) -> unformattable { return {}; }
+};
+
+// A type constant after applying arg_mapper<Context>.
+template <typename T, typename Context>
+using mapped_type_constant =
+    type_constant<decltype(arg_mapper<Context>().map(std::declval<const T&>())),
+                  typename Context::char_type>;
+
+enum { packed_arg_bits = 4 };
+// Maximum number of arguments with packed types.
+enum { max_packed_args = 62 / packed_arg_bits };
+enum : unsigned long long { is_unpacked_bit = 1ULL << 63 };
+enum : unsigned long long { has_named_args_bit = 1ULL << 62 };
+
+template <typename Char, typename InputIt>
+auto copy_str(InputIt begin, InputIt end, appender out) -> appender {
+  get_container(out).append(begin, end);
+  return out;
+}
+template <typename Char, typename InputIt>
+auto copy_str(InputIt begin, InputIt end,
+              std::back_insert_iterator<std::string> out)
+    -> std::back_insert_iterator<std::string> {
+  get_container(out).append(begin, end);
+  return out;
+}
+
+template <typename Char, typename R, typename OutputIt>
+FMT_CONSTEXPR auto copy_str(R&& rng, OutputIt out) -> OutputIt {
+  return detail::copy_str<Char>(rng.begin(), rng.end(), out);
+}
+
+#if FMT_GCC_VERSION && FMT_GCC_VERSION < 500
+// A workaround for gcc 4.8 to make void_t work in a SFINAE context.
+template <typename...> struct void_t_impl {
+  using type = void;
+};
+template <typename... T> using void_t = typename void_t_impl<T...>::type;
+#else
+template <typename...> using void_t = void;
+#endif
+
+template <typename It, typename T, typename Enable = void>
+struct is_output_iterator : std::false_type {};
+
+template <typename It, typename T>
+struct is_output_iterator<
+    It, T,
+    void_t<typename std::iterator_traits<It>::iterator_category,
+           decltype(*std::declval<It>() = std::declval<T>())>>
+    : std::true_type {};
+
+template <typename It> struct is_back_insert_iterator : std::false_type {};
+template <typename Container>
+struct is_back_insert_iterator<std::back_insert_iterator<Container>>
+    : std::true_type {};
+
+// A type-erased reference to an std::locale to avoid a heavy <locale> include.
+class locale_ref {
+ private:
+  const void* locale_;  // A type-erased pointer to std::locale.
+
+ public:
+  constexpr FMT_INLINE locale_ref() : locale_(nullptr) {}
+  template <typename Locale> explicit locale_ref(const Locale& loc);
+
+  explicit operator bool() const noexcept { return locale_ != nullptr; }
+
+  template <typename Locale> auto get() const -> Locale;
+};
+
+template <typename> constexpr auto encode_types() -> unsigned long long {
+  return 0;
+}
+
+template <typename Context, typename Arg, typename... Args>
+constexpr auto encode_types() -> unsigned long long {
+  return static_cast<unsigned>(mapped_type_constant<Arg, Context>::value) |
+         (encode_types<Context, Args...>() << packed_arg_bits);
+}
+
+#if defined(__cpp_if_constexpr)
+// This type is intentionally undefined, only used for errors
+template <typename T, typename Char> struct type_is_unformattable_for;
+#endif
+
+template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(PACKED)>
+FMT_CONSTEXPR FMT_INLINE auto make_arg(T& val) -> value<Context> {
+  using arg_type = remove_cvref_t<decltype(arg_mapper<Context>().map(val))>;
+
+  constexpr bool formattable_char =
+      !std::is_same<arg_type, unformattable_char>::value;
+  static_assert(formattable_char, "Mixing character types is disallowed.");
+
+  // Formatting of arbitrary pointers is disallowed. If you want to format a
+  // pointer cast it to `void*` or `const void*`. In particular, this forbids
+  // formatting of `[const] volatile char*` printed as bool by iostreams.
+  constexpr bool formattable_pointer =
+      !std::is_same<arg_type, unformattable_pointer>::value;
+  static_assert(formattable_pointer,
+                "Formatting of non-void pointers is disallowed.");
+
+  constexpr bool formattable = !std::is_same<arg_type, unformattable>::value;
+#if defined(__cpp_if_constexpr)
+  if constexpr (!formattable) {
+    type_is_unformattable_for<T, typename Context::char_type> _;
+  }
+#endif
+  static_assert(
+      formattable,
+      "Cannot format an argument. To make type T formattable provide a "
+      "formatter<T> specialization: https://fmt.dev/latest/api.html#udt");
+  return {arg_mapper<Context>().map(val)};
+}
+
+template <typename Context, typename T>
+FMT_CONSTEXPR auto make_arg(T& val) -> basic_format_arg<Context> {
+  auto arg = basic_format_arg<Context>();
+  arg.type_ = mapped_type_constant<T, Context>::value;
+  arg.value_ = make_arg<true, Context>(val);
+  return arg;
+}
+
+template <bool PACKED, typename Context, typename T, FMT_ENABLE_IF(!PACKED)>
+FMT_CONSTEXPR inline auto make_arg(T& val) -> basic_format_arg<Context> {
+  return make_arg<Context>(val);
+}
+}  // namespace detail
+FMT_BEGIN_EXPORT
+
+// A formatting argument. Context is a template parameter for the compiled API
+// where output can be unbuffered.
+template <typename Context> class basic_format_arg {
+ private:
+  detail::value<Context> value_;
+  detail::type type_;
+
+  template <typename ContextType, typename T>
+  friend FMT_CONSTEXPR auto detail::make_arg(T& value)
+      -> basic_format_arg<ContextType>;
+
+  template <typename Visitor, typename Ctx>
+  friend FMT_CONSTEXPR auto visit_format_arg(Visitor&& vis,
+                                             const basic_format_arg<Ctx>& arg)
+      -> decltype(vis(0));
+
+  friend class basic_format_args<Context>;
+  friend class dynamic_format_arg_store<Context>;
+
+  using char_type = typename Context::char_type;
+
+  template <typename T, typename Char, size_t NUM_ARGS, size_t NUM_NAMED_ARGS>
+  friend struct detail::arg_data;
+
+  basic_format_arg(const detail::named_arg_info<char_type>* args, size_t size)
+      : value_(args, size) {}
+
+ public:
+  class handle {
+   public:
+    explicit handle(detail::custom_value<Context> custom) : custom_(custom) {}
+
+    void format(typename Context::parse_context_type& parse_ctx,
+                Context& ctx) const {
+      custom_.format(custom_.value, parse_ctx, ctx);
+    }
+
+   private:
+    detail::custom_value<Context> custom_;
+  };
+
+  constexpr basic_format_arg() : type_(detail::type::none_type) {}
+
+  constexpr explicit operator bool() const noexcept {
+    return type_ != detail::type::none_type;
+  }
+
+  auto type() const -> detail::type { return type_; }
+
+  auto is_integral() const -> bool { return detail::is_integral_type(type_); }
+  auto is_arithmetic() const -> bool {
+    return detail::is_arithmetic_type(type_);
+  }
+
+  FMT_INLINE auto format_custom(const char_type* parse_begin,
+                                typename Context::parse_context_type& parse_ctx,
+                                Context& ctx) -> bool {
+    if (type_ != detail::type::custom_type) return false;
+    parse_ctx.advance_to(parse_begin);
+    value_.custom.format(value_.custom.value, parse_ctx, ctx);
+    return true;
+  }
+};
+
+/**
+  \rst
+  Visits an argument dispatching to the appropriate visit method based on
+  the argument type. For example, if the argument type is ``double`` then
+  ``vis(value)`` will be called with the value of type ``double``.
+  \endrst
+ */
+// DEPRECATED!
+template <typename Visitor, typename Context>
+FMT_CONSTEXPR FMT_INLINE auto visit_format_arg(
+    Visitor&& vis, const basic_format_arg<Context>& arg) -> decltype(vis(0)) {
+  switch (arg.type_) {
+  case detail::type::none_type:
+    break;
+  case detail::type::int_type:
+    return vis(arg.value_.int_value);
+  case detail::type::uint_type:
+    return vis(arg.value_.uint_value);
+  case detail::type::long_long_type:
+    return vis(arg.value_.long_long_value);
+  case detail::type::ulong_long_type:
+    return vis(arg.value_.ulong_long_value);
+  case detail::type::int128_type:
+    return vis(detail::convert_for_visit(arg.value_.int128_value));
+  case detail::type::uint128_type:
+    return vis(detail::convert_for_visit(arg.value_.uint128_value));
+  case detail::type::bool_type:
+    return vis(arg.value_.bool_value);
+  case detail::type::char_type:
+    return vis(arg.value_.char_value);
+  case detail::type::float_type:
+    return vis(arg.value_.float_value);
+  case detail::type::double_type:
+    return vis(arg.value_.double_value);
+  case detail::type::long_double_type:
+    return vis(arg.value_.long_double_value);
+  case detail::type::cstring_type:
+    return vis(arg.value_.string.data);
+  case detail::type::string_type:
+    using sv = basic_string_view<typename Context::char_type>;
+    return vis(sv(arg.value_.string.data, arg.value_.string.size));
+  case detail::type::pointer_type:
+    return vis(arg.value_.pointer);
+  case detail::type::custom_type:
+    return vis(typename basic_format_arg<Context>::handle(arg.value_.custom));
+  }
+  return vis(monostate());
+}
+
+// Formatting context.
+template <typename OutputIt, typename Char> class basic_format_context {
+ private:
+  OutputIt out_;
+  basic_format_args<basic_format_context> args_;
+  detail::locale_ref loc_;
+
+ public:
+  using iterator = OutputIt;
+  using format_arg = basic_format_arg<basic_format_context>;
+  using format_args = basic_format_args<basic_format_context>;
+  using parse_context_type = basic_format_parse_context<Char>;
+  template <typename T> using formatter_type = formatter<T, Char>;
+
+  /** The character type for the output. */
+  using char_type = Char;
+
+  basic_format_context(basic_format_context&&) = default;
+  basic_format_context(const basic_format_context&) = delete;
+  void operator=(const basic_format_context&) = delete;
+  /**
+    Constructs a ``basic_format_context`` object. References to the arguments
+    are stored in the object so make sure they have appropriate lifetimes.
+   */
+  constexpr basic_format_context(OutputIt out, format_args ctx_args,
+                                 detail::locale_ref loc = {})
+      : out_(out), args_(ctx_args), loc_(loc) {}
+
+  constexpr auto arg(int id) const -> format_arg { return args_.get(id); }
+  FMT_CONSTEXPR auto arg(basic_string_view<Char> name) -> format_arg {
+    return args_.get(name);
+  }
+  FMT_CONSTEXPR auto arg_id(basic_string_view<Char> name) -> int {
+    return args_.get_id(name);
+  }
+  auto args() const -> const format_args& { return args_; }
+
+  // DEPRECATED!
+  FMT_CONSTEXPR auto error_handler() -> detail::error_handler { return {}; }
+  void on_error(const char* message) { error_handler().on_error(message); }
+
+  // Returns an iterator to the beginning of the output range.
+  FMT_CONSTEXPR auto out() -> iterator { return out_; }
+
+  // Advances the begin iterator to ``it``.
+  void advance_to(iterator it) {
+    if (!detail::is_back_insert_iterator<iterator>()) out_ = it;
+  }
+
+  FMT_CONSTEXPR auto locale() -> detail::locale_ref { return loc_; }
+};
+
+template <typename Char>
+using buffer_context =
+    basic_format_context<detail::buffer_appender<Char>, Char>;
+using format_context = buffer_context<char>;
+
+template <typename T, typename Char = char>
+using is_formattable = bool_constant<!std::is_base_of<
+    detail::unformattable, decltype(detail::arg_mapper<buffer_context<Char>>()
+                                        .map(std::declval<T&>()))>::value>;
+
+/**
+  \rst
+  An array of references to arguments. It can be implicitly converted into
+  `~fmt::basic_format_args` for passing into type-erased formatting functions
+  such as `~fmt::vformat`.
+  \endrst
+ */
+template <typename Context, typename... Args>
+class format_arg_store
+#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
+    // Workaround a GCC template argument substitution bug.
+    : public basic_format_args<Context>
+#endif
+{
+ private:
+  static const size_t num_args = sizeof...(Args);
+  static constexpr size_t num_named_args = detail::count_named_args<Args...>();
+  static const bool is_packed = num_args <= detail::max_packed_args;
+
+  using value_type = conditional_t<is_packed, detail::value<Context>,
+                                   basic_format_arg<Context>>;
+
+  detail::arg_data<value_type, typename Context::char_type, num_args,
+                   num_named_args>
+      data_;
+
+  friend class basic_format_args<Context>;
+
+  static constexpr unsigned long long desc =
+      (is_packed ? detail::encode_types<Context, Args...>()
+                 : detail::is_unpacked_bit | num_args) |
+      (num_named_args != 0
+           ? static_cast<unsigned long long>(detail::has_named_args_bit)
+           : 0);
+
+ public:
+  template <typename... T>
+  FMT_CONSTEXPR FMT_INLINE format_arg_store(T&... args)
+      :
+#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
+        basic_format_args<Context>(*this),
+#endif
+        data_{detail::make_arg<is_packed, Context>(args)...} {
+    if (detail::const_check(num_named_args != 0))
+      detail::init_named_args(data_.named_args(), 0, 0, args...);
+  }
+};
+
+/**
+  \rst
+  Constructs a `~fmt::format_arg_store` object that contains references to
+  arguments and can be implicitly converted to `~fmt::format_args`. `Context`
+  can be omitted in which case it defaults to `~fmt::format_context`.
+  See `~fmt::arg` for lifetime considerations.
+  \endrst
+ */
+// Arguments are taken by lvalue references to avoid some lifetime issues.
+template <typename Context = format_context, typename... T>
+constexpr auto make_format_args(T&... args)
+    -> format_arg_store<Context, remove_cvref_t<T>...> {
+  return {args...};
+}
+
+/**
+  \rst
+  Returns a named argument to be used in a formatting function.
+  It should only be used in a call to a formatting function or
+  `dynamic_format_arg_store::push_back`.
+
+  **Example**::
+
+    fmt::print("Elapsed time: {s:.2f} seconds", fmt::arg("s", 1.23));
+  \endrst
+ */
+template <typename Char, typename T>
+inline auto arg(const Char* name, const T& arg) -> detail::named_arg<Char, T> {
+  static_assert(!detail::is_named_arg<T>(), "nested named arguments");
+  return {name, arg};
+}
+FMT_END_EXPORT
+
+/**
+  \rst
+  A view of a collection of formatting arguments. To avoid lifetime issues it
+  should only be used as a parameter type in type-erased functions such as
+  ``vformat``::
+
+    void vlog(string_view format_str, format_args args);  // OK
+    format_args args = make_format_args();  // Error: dangling reference
+  \endrst
+ */
+template <typename Context> class basic_format_args {
+ public:
+  using size_type = int;
+  using format_arg = basic_format_arg<Context>;
+
+ private:
+  // A descriptor that contains information about formatting arguments.
+  // If the number of arguments is less or equal to max_packed_args then
+  // argument types are passed in the descriptor. This reduces binary code size
+  // per formatting function call.
+  unsigned long long desc_;
+  union {
+    // If is_packed() returns true then argument values are stored in values_;
+    // otherwise they are stored in args_. This is done to improve cache
+    // locality and reduce compiled code size since storing larger objects
+    // may require more code (at least on x86-64) even if the same amount of
+    // data is actually copied to stack. It saves ~10% on the bloat test.
+    const detail::value<Context>* values_;
+    const format_arg* args_;
+  };
+
+  constexpr auto is_packed() const -> bool {
+    return (desc_ & detail::is_unpacked_bit) == 0;
+  }
+  auto has_named_args() const -> bool {
+    return (desc_ & detail::has_named_args_bit) != 0;
+  }
+
+  FMT_CONSTEXPR auto type(int index) const -> detail::type {
+    int shift = index * detail::packed_arg_bits;
+    unsigned int mask = (1 << detail::packed_arg_bits) - 1;
+    return static_cast<detail::type>((desc_ >> shift) & mask);
+  }
+
+  constexpr FMT_INLINE basic_format_args(unsigned long long desc,
+                                         const detail::value<Context>* values)
+      : desc_(desc), values_(values) {}
+  constexpr basic_format_args(unsigned long long desc, const format_arg* args)
+      : desc_(desc), args_(args) {}
+
+ public:
+  constexpr basic_format_args() : desc_(0), args_(nullptr) {}
+
+  /**
+   \rst
+   Constructs a `basic_format_args` object from `~fmt::format_arg_store`.
+   \endrst
+   */
+  template <typename... Args>
+  constexpr FMT_INLINE basic_format_args(
+      const format_arg_store<Context, Args...>& store)
+      : basic_format_args(format_arg_store<Context, Args...>::desc,
+                          store.data_.args()) {}
+
+  /**
+   \rst
+   Constructs a `basic_format_args` object from
+   `~fmt::dynamic_format_arg_store`.
+   \endrst
+   */
+  constexpr FMT_INLINE basic_format_args(
+      const dynamic_format_arg_store<Context>& store)
+      : basic_format_args(store.get_types(), store.data()) {}
+
+  /**
+   \rst
+   Constructs a `basic_format_args` object from a dynamic set of arguments.
+   \endrst
+   */
+  constexpr basic_format_args(const format_arg* args, int count)
+      : basic_format_args(detail::is_unpacked_bit | detail::to_unsigned(count),
+                          args) {}
+
+  /** Returns the argument with the specified id. */
+  FMT_CONSTEXPR auto get(int id) const -> format_arg {
+    format_arg arg;
+    if (!is_packed()) {
+      if (id < max_size()) arg = args_[id];
+      return arg;
+    }
+    if (id >= detail::max_packed_args) return arg;
+    arg.type_ = type(id);
+    if (arg.type_ == detail::type::none_type) return arg;
+    arg.value_ = values_[id];
+    return arg;
+  }
+
+  template <typename Char>
+  auto get(basic_string_view<Char> name) const -> format_arg {
+    int id = get_id(name);
+    return id >= 0 ? get(id) : format_arg();
+  }
+
+  template <typename Char>
+  auto get_id(basic_string_view<Char> name) const -> int {
+    if (!has_named_args()) return -1;
+    const auto& named_args =
+        (is_packed() ? values_[-1] : args_[-1].value_).named_args;
+    for (size_t i = 0; i < named_args.size; ++i) {
+      if (named_args.data[i].name == name) return named_args.data[i].id;
+    }
+    return -1;
+  }
+
+  auto max_size() const -> int {
+    unsigned long long max_packed = detail::max_packed_args;
+    return static_cast<int>(is_packed() ? max_packed
+                                        : desc_ & ~detail::is_unpacked_bit);
+  }
+};
+
+/** An alias to ``basic_format_args<format_context>``. */
+// A separate type would result in shorter symbols but break ABI compatibility
+// between clang and gcc on ARM (#1919).
+FMT_EXPORT using format_args = basic_format_args<format_context>;
+
+// We cannot use enum classes as bit fields because of a gcc bug, so we put them
+// in namespaces instead (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=61414).
+// Additionally, if an underlying type is specified, older gcc incorrectly warns
+// that the type is too small. Both bugs are fixed in gcc 9.3.
+#if FMT_GCC_VERSION && FMT_GCC_VERSION < 903
+#  define FMT_ENUM_UNDERLYING_TYPE(type)
+#else
+#  define FMT_ENUM_UNDERLYING_TYPE(type) : type
+#endif
+namespace align {
+enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, left, right, center,
+                                                  numeric};
+}
+using align_t = align::type;
+namespace sign {
+enum type FMT_ENUM_UNDERLYING_TYPE(unsigned char){none, minus, plus, space};
+}
+using sign_t = sign::type;
+
+namespace detail {
+
+// Workaround an array initialization issue in gcc 4.8.
+template <typename Char> struct fill_t {
+ private:
+  enum { max_size = 4 };
+  Char data_[max_size] = {Char(' '), Char(0), Char(0), Char(0)};
+  unsigned char size_ = 1;
+
+ public:
+  FMT_CONSTEXPR void operator=(basic_string_view<Char> s) {
+    auto size = s.size();
+    FMT_ASSERT(size <= max_size, "invalid fill");
+    for (size_t i = 0; i < size; ++i) data_[i] = s[i];
+    size_ = static_cast<unsigned char>(size);
+  }
+
+  constexpr auto size() const -> size_t { return size_; }
+  constexpr auto data() const -> const Char* { return data_; }
+
+  FMT_CONSTEXPR auto operator[](size_t index) -> Char& { return data_[index]; }
+  FMT_CONSTEXPR auto operator[](size_t index) const -> const Char& {
+    return data_[index];
+  }
+};
+}  // namespace detail
+
+enum class presentation_type : unsigned char {
+  none,
+  dec,             // 'd'
+  oct,             // 'o'
+  hex_lower,       // 'x'
+  hex_upper,       // 'X'
+  bin_lower,       // 'b'
+  bin_upper,       // 'B'
+  hexfloat_lower,  // 'a'
+  hexfloat_upper,  // 'A'
+  exp_lower,       // 'e'
+  exp_upper,       // 'E'
+  fixed_lower,     // 'f'
+  fixed_upper,     // 'F'
+  general_lower,   // 'g'
+  general_upper,   // 'G'
+  chr,             // 'c'
+  string,          // 's'
+  pointer,         // 'p'
+  debug            // '?'
+};
+
+// Format specifiers for built-in and string types.
+template <typename Char = char> struct format_specs {
+  int width;
+  int precision;
+  presentation_type type;
+  align_t align : 4;
+  sign_t sign : 3;
+  bool alt : 1;  // Alternate form ('#').
+  bool localized : 1;
+  detail::fill_t<Char> fill;
+
+  constexpr format_specs()
+      : width(0),
+        precision(-1),
+        type(presentation_type::none),
+        align(align::none),
+        sign(sign::none),
+        alt(false),
+        localized(false) {}
+};
+
+namespace detail {
+
+enum class arg_id_kind { none, index, name };
+
+// An argument reference.
+template <typename Char> struct arg_ref {
+  FMT_CONSTEXPR arg_ref() : kind(arg_id_kind::none), val() {}
+
+  FMT_CONSTEXPR explicit arg_ref(int index)
+      : kind(arg_id_kind::index), val(index) {}
+  FMT_CONSTEXPR explicit arg_ref(basic_string_view<Char> name)
+      : kind(arg_id_kind::name), val(name) {}
+
+  FMT_CONSTEXPR auto operator=(int idx) -> arg_ref& {
+    kind = arg_id_kind::index;
+    val.index = idx;
+    return *this;
+  }
+
+  arg_id_kind kind;
+  union value {
+    FMT_CONSTEXPR value(int idx = 0) : index(idx) {}
+    FMT_CONSTEXPR value(basic_string_view<Char> n) : name(n) {}
+
+    int index;
+    basic_string_view<Char> name;
+  } val;
+};
+
+// Format specifiers with width and precision resolved at formatting rather
+// than parsing time to allow reusing the same parsed specifiers with
+// different sets of arguments (precompilation of format strings).
+template <typename Char = char>
+struct dynamic_format_specs : format_specs<Char> {
+  arg_ref<Char> width_ref;
+  arg_ref<Char> precision_ref;
+};
+
+// Converts a character to ASCII. Returns '\0' on conversion failure.
+template <typename Char, FMT_ENABLE_IF(std::is_integral<Char>::value)>
+constexpr auto to_ascii(Char c) -> char {
+  return c <= 0xff ? static_cast<char>(c) : '\0';
+}
+template <typename Char, FMT_ENABLE_IF(std::is_enum<Char>::value)>
+constexpr auto to_ascii(Char c) -> char {
+  return c <= 0xff ? static_cast<char>(c) : '\0';
+}
+
+// Returns the number of code units in a code point or 1 on error.
+template <typename Char>
+FMT_CONSTEXPR auto code_point_length(const Char* begin) -> int {
+  if (const_check(sizeof(Char) != 1)) return 1;
+  auto c = static_cast<unsigned char>(*begin);
+  return static_cast<int>((0x3a55000000000000ull >> (2 * (c >> 3))) & 0x3) + 1;
+}
+
+// Return the result via the out param to workaround gcc bug 77539.
+template <bool IS_CONSTEXPR, typename T, typename Ptr = const T*>
+FMT_CONSTEXPR auto find(Ptr first, Ptr last, T value, Ptr& out) -> bool {
+  for (out = first; out != last; ++out) {
+    if (*out == value) return true;
+  }
+  return false;
+}
+
+template <>
+inline auto find<false, char>(const char* first, const char* last, char value,
+                              const char*& out) -> bool {
+  out = static_cast<const char*>(
+      std::memchr(first, value, to_unsigned(last - first)));
+  return out != nullptr;
+}
+
+// Parses the range [begin, end) as an unsigned integer. This function assumes
+// that the range is non-empty and the first character is a digit.
+template <typename Char>
+FMT_CONSTEXPR auto parse_nonnegative_int(const Char*& begin, const Char* end,
+                                         int error_value) noexcept -> int {
+  FMT_ASSERT(begin != end && '0' <= *begin && *begin <= '9', "");
+  unsigned value = 0, prev = 0;
+  auto p = begin;
+  do {
+    prev = value;
+    value = value * 10 + unsigned(*p - '0');
+    ++p;
+  } while (p != end && '0' <= *p && *p <= '9');
+  auto num_digits = p - begin;
+  begin = p;
+  if (num_digits <= std::numeric_limits<int>::digits10)
+    return static_cast<int>(value);
+  // Check for overflow.
+  const unsigned max = to_unsigned((std::numeric_limits<int>::max)());
+  return num_digits == std::numeric_limits<int>::digits10 + 1 &&
+                 prev * 10ull + unsigned(p[-1] - '0') <= max
+             ? static_cast<int>(value)
+             : error_value;
+}
+
+FMT_CONSTEXPR inline auto parse_align(char c) -> align_t {
+  switch (c) {
+  case '<':
+    return align::left;
+  case '>':
+    return align::right;
+  case '^':
+    return align::center;
+  }
+  return align::none;
+}
+
+template <typename Char> constexpr auto is_name_start(Char c) -> bool {
+  return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c == '_';
+}
+
+template <typename Char, typename Handler>
+FMT_CONSTEXPR auto do_parse_arg_id(const Char* begin, const Char* end,
+                                   Handler&& handler) -> const Char* {
+  Char c = *begin;
+  if (c >= '0' && c <= '9') {
+    int index = 0;
+    constexpr int max = (std::numeric_limits<int>::max)();
+    if (c != '0')
+      index = parse_nonnegative_int(begin, end, max);
+    else
+      ++begin;
+    if (begin == end || (*begin != '}' && *begin != ':'))
+      throw_format_error("invalid format string");
+    else
+      handler.on_index(index);
+    return begin;
+  }
+  if (!is_name_start(c)) {
+    throw_format_error("invalid format string");
+    return begin;
+  }
+  auto it = begin;
+  do {
+    ++it;
+  } while (it != end && (is_name_start(*it) || ('0' <= *it && *it <= '9')));
+  handler.on_name({begin, to_unsigned(it - begin)});
+  return it;
+}
+
+template <typename Char, typename Handler>
+FMT_CONSTEXPR FMT_INLINE auto parse_arg_id(const Char* begin, const Char* end,
+                                           Handler&& handler) -> const Char* {
+  FMT_ASSERT(begin != end, "");
+  Char c = *begin;
+  if (c != '}' && c != ':') return do_parse_arg_id(begin, end, handler);
+  handler.on_auto();
+  return begin;
+}
+
+template <typename Char> struct dynamic_spec_id_handler {
+  basic_format_parse_context<Char>& ctx;
+  arg_ref<Char>& ref;
+
+  FMT_CONSTEXPR void on_auto() {
+    int id = ctx.next_arg_id();
+    ref = arg_ref<Char>(id);
+    ctx.check_dynamic_spec(id);
+  }
+  FMT_CONSTEXPR void on_index(int id) {
+    ref = arg_ref<Char>(id);
+    ctx.check_arg_id(id);
+    ctx.check_dynamic_spec(id);
+  }
+  FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
+    ref = arg_ref<Char>(id);
+    ctx.check_arg_id(id);
+  }
+};
+
+// Parses [integer | "{" [arg_id] "}"].
+template <typename Char>
+FMT_CONSTEXPR auto parse_dynamic_spec(const Char* begin, const Char* end,
+                                      int& value, arg_ref<Char>& ref,
+                                      basic_format_parse_context<Char>& ctx)
+    -> const Char* {
+  FMT_ASSERT(begin != end, "");
+  if ('0' <= *begin && *begin <= '9') {
+    int val = parse_nonnegative_int(begin, end, -1);
+    if (val != -1)
+      value = val;
+    else
+      throw_format_error("number is too big");
+  } else if (*begin == '{') {
+    ++begin;
+    auto handler = dynamic_spec_id_handler<Char>{ctx, ref};
+    if (begin != end) begin = parse_arg_id(begin, end, handler);
+    if (begin != end && *begin == '}') return ++begin;
+    throw_format_error("invalid format string");
+  }
+  return begin;
+}
+
+template <typename Char>
+FMT_CONSTEXPR auto parse_precision(const Char* begin, const Char* end,
+                                   int& value, arg_ref<Char>& ref,
+                                   basic_format_parse_context<Char>& ctx)
+    -> const Char* {
+  ++begin;
+  if (begin == end || *begin == '}') {
+    throw_format_error("invalid precision");
+    return begin;
+  }
+  return parse_dynamic_spec(begin, end, value, ref, ctx);
+}
+
+enum class state { start, align, sign, hash, zero, width, precision, locale };
+
+// Parses standard format specifiers.
+template <typename Char>
+FMT_CONSTEXPR FMT_INLINE auto parse_format_specs(
+    const Char* begin, const Char* end, dynamic_format_specs<Char>& specs,
+    basic_format_parse_context<Char>& ctx, type arg_type) -> const Char* {
+  auto c = '\0';
+  if (end - begin > 1) {
+    auto next = to_ascii(begin[1]);
+    c = parse_align(next) == align::none ? to_ascii(*begin) : '\0';
+  } else {
+    if (begin == end) return begin;
+    c = to_ascii(*begin);
+  }
+
+  struct {
+    state current_state = state::start;
+    FMT_CONSTEXPR void operator()(state s, bool valid = true) {
+      if (current_state >= s || !valid)
+        throw_format_error("invalid format specifier");
+      current_state = s;
+    }
+  } enter_state;
+
+  using pres = presentation_type;
+  constexpr auto integral_set = sint_set | uint_set | bool_set | char_set;
+  struct {
+    const Char*& begin;
+    dynamic_format_specs<Char>& specs;
+    type arg_type;
+
+    FMT_CONSTEXPR auto operator()(pres pres_type, int set) -> const Char* {
+      if (!in(arg_type, set)) {
+        if (arg_type == type::none_type) return begin;
+        throw_format_error("invalid format specifier");
+      }
+      specs.type = pres_type;
+      return begin + 1;
+    }
+  } parse_presentation_type{begin, specs, arg_type};
+
+  for (;;) {
+    switch (c) {
+    case '<':
+    case '>':
+    case '^':
+      enter_state(state::align);
+      specs.align = parse_align(c);
+      ++begin;
+      break;
+    case '+':
+    case '-':
+    case ' ':
+      if (arg_type == type::none_type) return begin;
+      enter_state(state::sign, in(arg_type, sint_set | float_set));
+      switch (c) {
+      case '+':
+        specs.sign = sign::plus;
+        break;
+      case '-':
+        specs.sign = sign::minus;
+        break;
+      case ' ':
+        specs.sign = sign::space;
+        break;
+      }
+      ++begin;
+      break;
+    case '#':
+      if (arg_type == type::none_type) return begin;
+      enter_state(state::hash, is_arithmetic_type(arg_type));
+      specs.alt = true;
+      ++begin;
+      break;
+    case '0':
+      enter_state(state::zero);
+      if (!is_arithmetic_type(arg_type)) {
+        if (arg_type == type::none_type) return begin;
+        throw_format_error("format specifier requires numeric argument");
+      }
+      if (specs.align == align::none) {
+        // Ignore 0 if align is specified for compatibility with std::format.
+        specs.align = align::numeric;
+        specs.fill[0] = Char('0');
+      }
+      ++begin;
+      break;
+    case '1':
+    case '2':
+    case '3':
+    case '4':
+    case '5':
+    case '6':
+    case '7':
+    case '8':
+    case '9':
+    case '{':
+      enter_state(state::width);
+      begin = parse_dynamic_spec(begin, end, specs.width, specs.width_ref, ctx);
+      break;
+    case '.':
+      if (arg_type == type::none_type) return begin;
+      enter_state(state::precision,
+                  in(arg_type, float_set | string_set | cstring_set));
+      begin = parse_precision(begin, end, specs.precision, specs.precision_ref,
+                              ctx);
+      break;
+    case 'L':
+      if (arg_type == type::none_type) return begin;
+      enter_state(state::locale, is_arithmetic_type(arg_type));
+      specs.localized = true;
+      ++begin;
+      break;
+    case 'd':
+      return parse_presentation_type(pres::dec, integral_set);
+    case 'o':
+      return parse_presentation_type(pres::oct, integral_set);
+    case 'x':
+      return parse_presentation_type(pres::hex_lower, integral_set);
+    case 'X':
+      return parse_presentation_type(pres::hex_upper, integral_set);
+    case 'b':
+      return parse_presentation_type(pres::bin_lower, integral_set);
+    case 'B':
+      return parse_presentation_type(pres::bin_upper, integral_set);
+    case 'a':
+      return parse_presentation_type(pres::hexfloat_lower, float_set);
+    case 'A':
+      return parse_presentation_type(pres::hexfloat_upper, float_set);
+    case 'e':
+      return parse_presentation_type(pres::exp_lower, float_set);
+    case 'E':
+      return parse_presentation_type(pres::exp_upper, float_set);
+    case 'f':
+      return parse_presentation_type(pres::fixed_lower, float_set);
+    case 'F':
+      return parse_presentation_type(pres::fixed_upper, float_set);
+    case 'g':
+      return parse_presentation_type(pres::general_lower, float_set);
+    case 'G':
+      return parse_presentation_type(pres::general_upper, float_set);
+    case 'c':
+      if (arg_type == type::bool_type)
+        throw_format_error("invalid format specifier");
+      return parse_presentation_type(pres::chr, integral_set);
+    case 's':
+      return parse_presentation_type(pres::string,
+                                     bool_set | string_set | cstring_set);
+    case 'p':
+      return parse_presentation_type(pres::pointer, pointer_set | cstring_set);
+    case '?':
+      return parse_presentation_type(pres::debug,
+                                     char_set | string_set | cstring_set);
+    case '}':
+      return begin;
+    default: {
+      if (*begin == '}') return begin;
+      // Parse fill and alignment.
+      auto fill_end = begin + code_point_length(begin);
+      if (end - fill_end <= 0) {
+        throw_format_error("invalid format specifier");
+        return begin;
+      }
+      if (*begin == '{') {
+        throw_format_error("invalid fill character '{'");
+        return begin;
+      }
+      auto align = parse_align(to_ascii(*fill_end));
+      enter_state(state::align, align != align::none);
+      specs.fill = {begin, to_unsigned(fill_end - begin)};
+      specs.align = align;
+      begin = fill_end + 1;
+    }
+    }
+    if (begin == end) return begin;
+    c = to_ascii(*begin);
+  }
+}
+
+template <typename Char, typename Handler>
+FMT_CONSTEXPR auto parse_replacement_field(const Char* begin, const Char* end,
+                                           Handler&& handler) -> const Char* {
+  struct id_adapter {
+    Handler& handler;
+    int arg_id;
+
+    FMT_CONSTEXPR void on_auto() { arg_id = handler.on_arg_id(); }
+    FMT_CONSTEXPR void on_index(int id) { arg_id = handler.on_arg_id(id); }
+    FMT_CONSTEXPR void on_name(basic_string_view<Char> id) {
+      arg_id = handler.on_arg_id(id);
+    }
+  };
+
+  ++begin;
+  if (begin == end) return handler.on_error("invalid format string"), end;
+  if (*begin == '}') {
+    handler.on_replacement_field(handler.on_arg_id(), begin);
+  } else if (*begin == '{') {
+    handler.on_text(begin, begin + 1);
+  } else {
+    auto adapter = id_adapter{handler, 0};
+    begin = parse_arg_id(begin, end, adapter);
+    Char c = begin != end ? *begin : Char();
+    if (c == '}') {
+      handler.on_replacement_field(adapter.arg_id, begin);
+    } else if (c == ':') {
+      begin = handler.on_format_specs(adapter.arg_id, begin + 1, end);
+      if (begin == end || *begin != '}')
+        return handler.on_error("unknown format specifier"), end;
+    } else {
+      return handler.on_error("missing '}' in format string"), end;
+    }
+  }
+  return begin + 1;
+}
+
+template <bool IS_CONSTEXPR, typename Char, typename Handler>
+FMT_CONSTEXPR FMT_INLINE void parse_format_string(
+    basic_string_view<Char> format_str, Handler&& handler) {
+  auto begin = format_str.data();
+  auto end = begin + format_str.size();
+  if (end - begin < 32) {
+    // Use a simple loop instead of memchr for small strings.
+    const Char* p = begin;
+    while (p != end) {
+      auto c = *p++;
+      if (c == '{') {
+        handler.on_text(begin, p - 1);
+        begin = p = parse_replacement_field(p - 1, end, handler);
+      } else if (c == '}') {
+        if (p == end || *p != '}')
+          return handler.on_error("unmatched '}' in format string");
+        handler.on_text(begin, p);
+        begin = ++p;
+      }
+    }
+    handler.on_text(begin, end);
+    return;
+  }
+  struct writer {
+    FMT_CONSTEXPR void operator()(const Char* from, const Char* to) {
+      if (from == to) return;
+      for (;;) {
+        const Char* p = nullptr;
+        if (!find<IS_CONSTEXPR>(from, to, Char('}'), p))
+          return handler_.on_text(from, to);
+        ++p;
+        if (p == to || *p != '}')
+          return handler_.on_error("unmatched '}' in format string");
+        handler_.on_text(from, p);
+        from = p + 1;
+      }
+    }
+    Handler& handler_;
+  } write = {handler};
+  while (begin != end) {
+    // Doing two passes with memchr (one for '{' and another for '}') is up to
+    // 2.5x faster than the naive one-pass implementation on big format strings.
+    const Char* p = begin;
+    if (*begin != '{' && !find<IS_CONSTEXPR>(begin + 1, end, Char('{'), p))
+      return write(begin, end);
+    write(begin, p);
+    begin = parse_replacement_field(p, end, handler);
+  }
+}
+
+template <typename T, bool = is_named_arg<T>::value> struct strip_named_arg {
+  using type = T;
+};
+template <typename T> struct strip_named_arg<T, true> {
+  using type = remove_cvref_t<decltype(T::value)>;
+};
+
+template <typename T, typename ParseContext>
+FMT_CONSTEXPR auto parse_format_specs(ParseContext& ctx)
+    -> decltype(ctx.begin()) {
+  using char_type = typename ParseContext::char_type;
+  using context = buffer_context<char_type>;
+  using mapped_type = conditional_t<
+      mapped_type_constant<T, context>::value != type::custom_type,
+      decltype(arg_mapper<context>().map(std::declval<const T&>())),
+      typename strip_named_arg<T>::type>;
+#if defined(__cpp_if_constexpr)
+  if constexpr (std::is_default_constructible<
+                    formatter<mapped_type, char_type>>::value) {
+    return formatter<mapped_type, char_type>().parse(ctx);
+  } else {
+    type_is_unformattable_for<T, char_type> _;
+    return ctx.begin();
+  }
+#else
+  return formatter<mapped_type, char_type>().parse(ctx);
+#endif
+}
+
+// Checks char specs and returns true iff the presentation type is char-like.
+template <typename Char>
+FMT_CONSTEXPR auto check_char_specs(const format_specs<Char>& specs) -> bool {
+  if (specs.type != presentation_type::none &&
+      specs.type != presentation_type::chr &&
+      specs.type != presentation_type::debug) {
+    return false;
+  }
+  if (specs.align == align::numeric || specs.sign != sign::none || specs.alt)
+    throw_format_error("invalid format specifier for char");
+  return true;
+}
+
+#if FMT_USE_NONTYPE_TEMPLATE_ARGS
+template <int N, typename T, typename... Args, typename Char>
+constexpr auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
+  if constexpr (is_statically_named_arg<T>()) {
+    if (name == T::name) return N;
+  }
+  if constexpr (sizeof...(Args) > 0)
+    return get_arg_index_by_name<N + 1, Args...>(name);
+  (void)name;  // Workaround an MSVC bug about "unused" parameter.
+  return -1;
+}
+#endif
+
+template <typename... Args, typename Char>
+FMT_CONSTEXPR auto get_arg_index_by_name(basic_string_view<Char> name) -> int {
+#if FMT_USE_NONTYPE_TEMPLATE_ARGS
+  if constexpr (sizeof...(Args) > 0)
+    return get_arg_index_by_name<0, Args...>(name);
+#endif
+  (void)name;
+  return -1;
+}
+
+template <typename Char, typename... Args> class format_string_checker {
+ private:
+  using parse_context_type = compile_parse_context<Char>;
+  static constexpr int num_args = sizeof...(Args);
+
+  // Format specifier parsing function.
+  // In the future basic_format_parse_context will replace compile_parse_context
+  // here and will use is_constant_evaluated and downcasting to access the data
+  // needed for compile-time checks: https://godbolt.org/z/GvWzcTjh1.
+  using parse_func = const Char* (*)(parse_context_type&);
+
+  type types_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
+  parse_context_type context_;
+  parse_func parse_funcs_[num_args > 0 ? static_cast<size_t>(num_args) : 1];
+
+ public:
+  explicit FMT_CONSTEXPR format_string_checker(basic_string_view<Char> fmt)
+      : types_{mapped_type_constant<Args, buffer_context<Char>>::value...},
+        context_(fmt, num_args, types_),
+        parse_funcs_{&parse_format_specs<Args, parse_context_type>...} {}
+
+  FMT_CONSTEXPR void on_text(const Char*, const Char*) {}
+
+  FMT_CONSTEXPR auto on_arg_id() -> int { return context_.next_arg_id(); }
+  FMT_CONSTEXPR auto on_arg_id(int id) -> int {
+    return context_.check_arg_id(id), id;
+  }
+  FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
+#if FMT_USE_NONTYPE_TEMPLATE_ARGS
+    auto index = get_arg_index_by_name<Args...>(id);
+    if (index < 0) on_error("named argument is not found");
+    return index;
+#else
+    (void)id;
+    on_error("compile-time checks for named arguments require C++20 support");
+    return 0;
+#endif
+  }
+
+  FMT_CONSTEXPR void on_replacement_field(int id, const Char* begin) {
+    on_format_specs(id, begin, begin);  // Call parse() on empty specs.
+  }
+
+  FMT_CONSTEXPR auto on_format_specs(int id, const Char* begin, const Char*)
+      -> const Char* {
+    context_.advance_to(begin);
+    // id >= 0 check is a workaround for gcc 10 bug (#2065).
+    return id >= 0 && id < num_args ? parse_funcs_[id](context_) : begin;
+  }
+
+  FMT_CONSTEXPR void on_error(const char* message) {
+    throw_format_error(message);
+  }
+};
+
+// Reports a compile-time error if S is not a valid format string.
+template <typename..., typename S, FMT_ENABLE_IF(!is_compile_string<S>::value)>
+FMT_INLINE void check_format_string(const S&) {
+#ifdef FMT_ENFORCE_COMPILE_STRING
+  static_assert(is_compile_string<S>::value,
+                "FMT_ENFORCE_COMPILE_STRING requires all format strings to use "
+                "FMT_STRING.");
+#endif
+}
+template <typename... Args, typename S,
+          FMT_ENABLE_IF(is_compile_string<S>::value)>
+void check_format_string(S format_str) {
+  using char_t = typename S::char_type;
+  FMT_CONSTEXPR auto s = basic_string_view<char_t>(format_str);
+  using checker = format_string_checker<char_t, remove_cvref_t<Args>...>;
+  FMT_CONSTEXPR bool error = (parse_format_string<true>(s, checker(s)), true);
+  ignore_unused(error);
+}
+
+template <typename Char = char> struct vformat_args {
+  using type = basic_format_args<
+      basic_format_context<std::back_insert_iterator<buffer<Char>>, Char>>;
+};
+template <> struct vformat_args<char> {
+  using type = format_args;
+};
+
+// Use vformat_args and avoid type_identity to keep symbols short.
+template <typename Char>
+void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
+                typename vformat_args<Char>::type args, locale_ref loc = {});
+
+FMT_API void vprint_mojibake(std::FILE*, string_view, format_args);
+#ifndef _WIN32
+inline void vprint_mojibake(std::FILE*, string_view, format_args) {}
+#endif
+}  // namespace detail
+
+FMT_BEGIN_EXPORT
+
+// A formatter specialization for natively supported types.
+template <typename T, typename Char>
+struct formatter<T, Char,
+                 enable_if_t<detail::type_constant<T, Char>::value !=
+                             detail::type::custom_type>> {
+ private:
+  detail::dynamic_format_specs<Char> specs_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
+    auto type = detail::type_constant<T, Char>::value;
+    auto end =
+        detail::parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx, type);
+    if (type == detail::type::char_type) detail::check_char_specs(specs_);
+    return end;
+  }
+
+  template <detail::type U = detail::type_constant<T, Char>::value,
+            FMT_ENABLE_IF(U == detail::type::string_type ||
+                          U == detail::type::cstring_type ||
+                          U == detail::type::char_type)>
+  FMT_CONSTEXPR void set_debug_format(bool set = true) {
+    specs_.type = set ? presentation_type::debug : presentation_type::none;
+  }
+
+  template <typename FormatContext>
+  FMT_CONSTEXPR auto format(const T& val, FormatContext& ctx) const
+      -> decltype(ctx.out());
+};
+
+template <typename Char = char> struct runtime_format_string {
+  basic_string_view<Char> str;
+};
+
+/** A compile-time format string. */
+template <typename Char, typename... Args> class basic_format_string {
+ private:
+  basic_string_view<Char> str_;
+
+ public:
+  template <typename S,
+            FMT_ENABLE_IF(
+                std::is_convertible<const S&, basic_string_view<Char>>::value)>
+  FMT_CONSTEVAL FMT_INLINE basic_format_string(const S& s) : str_(s) {
+    static_assert(
+        detail::count<
+            (std::is_base_of<detail::view, remove_reference_t<Args>>::value &&
+             std::is_reference<Args>::value)...>() == 0,
+        "passing views as lvalues is disallowed");
+#ifdef FMT_HAS_CONSTEVAL
+    if constexpr (detail::count_named_args<Args...>() ==
+                  detail::count_statically_named_args<Args...>()) {
+      using checker =
+          detail::format_string_checker<Char, remove_cvref_t<Args>...>;
+      detail::parse_format_string<true>(str_, checker(s));
+    }
+#else
+    detail::check_format_string<Args...>(s);
+#endif
+  }
+  basic_format_string(runtime_format_string<Char> fmt) : str_(fmt.str) {}
+
+  FMT_INLINE operator basic_string_view<Char>() const { return str_; }
+  FMT_INLINE auto get() const -> basic_string_view<Char> { return str_; }
+};
+
+#if FMT_GCC_VERSION && FMT_GCC_VERSION < 409
+// Workaround broken conversion on older gcc.
+template <typename...> using format_string = string_view;
+inline auto runtime(string_view s) -> string_view { return s; }
+#else
+template <typename... Args>
+using format_string = basic_format_string<char, type_identity_t<Args>...>;
+/**
+  \rst
+  Creates a runtime format string.
+
+  **Example**::
+
+    // Check format string at runtime instead of compile-time.
+    fmt::print(fmt::runtime("{:d}"), "I am not a number");
+  \endrst
+ */
+inline auto runtime(string_view s) -> runtime_format_string<> { return {{s}}; }
+#endif
+
+FMT_API auto vformat(string_view fmt, format_args args) -> std::string;
+
+/**
+  \rst
+  Formats ``args`` according to specifications in ``fmt`` and returns the result
+  as a string.
+
+  **Example**::
+
+    #include <fmt/core.h>
+    std::string message = fmt::format("The answer is {}.", 42);
+  \endrst
+*/
+template <typename... T>
+FMT_NODISCARD FMT_INLINE auto format(format_string<T...> fmt, T&&... args)
+    -> std::string {
+  return vformat(fmt, fmt::make_format_args(args...));
+}
+
+/** Formats a string and writes the output to ``out``. */
+template <typename OutputIt,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
+auto vformat_to(OutputIt out, string_view fmt, format_args args) -> OutputIt {
+  auto&& buf = detail::get_buffer<char>(out);
+  detail::vformat_to(buf, fmt, args, {});
+  return detail::get_iterator(buf, out);
+}
+
+/**
+ \rst
+ Formats ``args`` according to specifications in ``fmt``, writes the result to
+ the output iterator ``out`` and returns the iterator past the end of the output
+ range. `format_to` does not append a terminating null character.
+
+ **Example**::
+
+   auto out = std::vector<char>();
+   fmt::format_to(std::back_inserter(out), "{}", 42);
+ \endrst
+ */
+template <typename OutputIt, typename... T,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
+FMT_INLINE auto format_to(OutputIt out, format_string<T...> fmt, T&&... args)
+    -> OutputIt {
+  return vformat_to(out, fmt, fmt::make_format_args(args...));
+}
+
+template <typename OutputIt> struct format_to_n_result {
+  /** Iterator past the end of the output range. */
+  OutputIt out;
+  /** Total (not truncated) output size. */
+  size_t size;
+};
+
+template <typename OutputIt, typename... T,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
+auto vformat_to_n(OutputIt out, size_t n, string_view fmt, format_args args)
+    -> format_to_n_result<OutputIt> {
+  using traits = detail::fixed_buffer_traits;
+  auto buf = detail::iterator_buffer<OutputIt, char, traits>(out, n);
+  detail::vformat_to(buf, fmt, args, {});
+  return {buf.out(), buf.count()};
+}
+
+/**
+  \rst
+  Formats ``args`` according to specifications in ``fmt``, writes up to ``n``
+  characters of the result to the output iterator ``out`` and returns the total
+  (not truncated) output size and the iterator past the end of the output range.
+  `format_to_n` does not append a terminating null character.
+  \endrst
+ */
+template <typename OutputIt, typename... T,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value)>
+FMT_INLINE auto format_to_n(OutputIt out, size_t n, format_string<T...> fmt,
+                            T&&... args) -> format_to_n_result<OutputIt> {
+  return vformat_to_n(out, n, fmt, fmt::make_format_args(args...));
+}
+
+/** Returns the number of chars in the output of ``format(fmt, args...)``. */
+template <typename... T>
+FMT_NODISCARD FMT_INLINE auto formatted_size(format_string<T...> fmt,
+                                             T&&... args) -> size_t {
+  auto buf = detail::counting_buffer<>();
+  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...), {});
+  return buf.count();
+}
+
+FMT_API void vprint(string_view fmt, format_args args);
+FMT_API void vprint(std::FILE* f, string_view fmt, format_args args);
+
+/**
+  \rst
+  Formats ``args`` according to specifications in ``fmt`` and writes the output
+  to ``stdout``.
+
+  **Example**::
+
+    fmt::print("Elapsed time: {0:.2f} seconds", 1.23);
+  \endrst
+ */
+template <typename... T>
+FMT_INLINE void print(format_string<T...> fmt, T&&... args) {
+  const auto& vargs = fmt::make_format_args(args...);
+  return detail::is_utf8() ? vprint(fmt, vargs)
+                           : detail::vprint_mojibake(stdout, fmt, vargs);
+}
+
+/**
+  \rst
+  Formats ``args`` according to specifications in ``fmt`` and writes the
+  output to the file ``f``.
+
+  **Example**::
+
+    fmt::print(stderr, "Don't {}!", "panic");
+  \endrst
+ */
+template <typename... T>
+FMT_INLINE void print(std::FILE* f, format_string<T...> fmt, T&&... args) {
+  const auto& vargs = fmt::make_format_args(args...);
+  return detail::is_utf8() ? vprint(f, fmt, vargs)
+                           : detail::vprint_mojibake(f, fmt, vargs);
+}
+
+/**
+  Formats ``args`` according to specifications in ``fmt`` and writes the
+  output to the file ``f`` followed by a newline.
+ */
+template <typename... T>
+FMT_INLINE void println(std::FILE* f, format_string<T...> fmt, T&&... args) {
+  return fmt::print(f, "{}\n", fmt::format(fmt, std::forward<T>(args)...));
+}
+
+/**
+  Formats ``args`` according to specifications in ``fmt`` and writes the output
+  to ``stdout`` followed by a newline.
+ */
+template <typename... T>
+FMT_INLINE void println(format_string<T...> fmt, T&&... args) {
+  return fmt::println(stdout, fmt, std::forward<T>(args)...);
+}
+
+FMT_END_EXPORT
+FMT_GCC_PRAGMA("GCC pop_options")
+FMT_END_NAMESPACE
+
+#ifdef FMT_HEADER_ONLY
+#  include "format.h"
+#endif
+#endif  // FMT_CORE_H_
diff --git a/vm/fmt/format-inl.h b/vm/fmt/format-inl.h
new file mode 100644 (file)
index 0000000..efac5d1
--- /dev/null
@@ -0,0 +1,1678 @@
+// Formatting library for C++ - implementation
+//
+// Copyright (c) 2012 - 2016, Victor Zverovich
+// All rights reserved.
+//
+// For the license information refer to format.h.
+
+#ifndef FMT_FORMAT_INL_H_
+#define FMT_FORMAT_INL_H_
+
+#include <algorithm>
+#include <cerrno>  // errno
+#include <climits>
+#include <cmath>
+#include <exception>
+
+#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
+#  include <locale>
+#endif
+
+#if defined(_WIN32) && !defined(FMT_WINDOWS_NO_WCHAR)
+#  include <io.h>  // _isatty
+#endif
+
+#include "format.h"
+
+FMT_BEGIN_NAMESPACE
+namespace detail {
+
+FMT_FUNC void assert_fail(const char* file, int line, const char* message) {
+  // Use unchecked std::fprintf to avoid triggering another assertion when
+  // writing to stderr fails
+  std::fprintf(stderr, "%s:%d: assertion failed: %s", file, line, message);
+  // Chosen instead of std::abort to satisfy Clang in CUDA mode during device
+  // code pass.
+  std::terminate();
+}
+
+FMT_FUNC void throw_format_error(const char* message) {
+  FMT_THROW(format_error(message));
+}
+
+FMT_FUNC void format_error_code(detail::buffer<char>& out, int error_code,
+                                string_view message) noexcept {
+  // Report error code making sure that the output fits into
+  // inline_buffer_size to avoid dynamic memory allocation and potential
+  // bad_alloc.
+  out.try_resize(0);
+  static const char SEP[] = ": ";
+  static const char ERROR_STR[] = "error ";
+  // Subtract 2 to account for terminating null characters in SEP and ERROR_STR.
+  size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2;
+  auto abs_value = static_cast<uint32_or_64_or_128_t<int>>(error_code);
+  if (detail::is_negative(error_code)) {
+    abs_value = 0 - abs_value;
+    ++error_code_size;
+  }
+  error_code_size += detail::to_unsigned(detail::count_digits(abs_value));
+  auto it = buffer_appender<char>(out);
+  if (message.size() <= inline_buffer_size - error_code_size)
+    fmt::format_to(it, FMT_STRING("{}{}"), message, SEP);
+  fmt::format_to(it, FMT_STRING("{}{}"), ERROR_STR, error_code);
+  FMT_ASSERT(out.size() <= inline_buffer_size, "");
+}
+
+FMT_FUNC void report_error(format_func func, int error_code,
+                           const char* message) noexcept {
+  memory_buffer full_message;
+  func(full_message, error_code, message);
+  // Don't use fwrite_fully because the latter may throw.
+  if (std::fwrite(full_message.data(), full_message.size(), 1, stderr) > 0)
+    std::fputc('\n', stderr);
+}
+
+// A wrapper around fwrite that throws on error.
+inline void fwrite_fully(const void* ptr, size_t count, FILE* stream) {
+  size_t written = std::fwrite(ptr, 1, count, stream);
+  if (written < count)
+    FMT_THROW(system_error(errno, FMT_STRING("cannot write to file")));
+}
+
+#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
+template <typename Locale>
+locale_ref::locale_ref(const Locale& loc) : locale_(&loc) {
+  static_assert(std::is_same<Locale, std::locale>::value, "");
+}
+
+template <typename Locale> auto locale_ref::get() const -> Locale {
+  static_assert(std::is_same<Locale, std::locale>::value, "");
+  return locale_ ? *static_cast<const std::locale*>(locale_) : std::locale();
+}
+
+template <typename Char>
+FMT_FUNC auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char> {
+  auto& facet = std::use_facet<std::numpunct<Char>>(loc.get<std::locale>());
+  auto grouping = facet.grouping();
+  auto thousands_sep = grouping.empty() ? Char() : facet.thousands_sep();
+  return {std::move(grouping), thousands_sep};
+}
+template <typename Char>
+FMT_FUNC auto decimal_point_impl(locale_ref loc) -> Char {
+  return std::use_facet<std::numpunct<Char>>(loc.get<std::locale>())
+      .decimal_point();
+}
+#else
+template <typename Char>
+FMT_FUNC auto thousands_sep_impl(locale_ref) -> thousands_sep_result<Char> {
+  return {"\03", FMT_STATIC_THOUSANDS_SEPARATOR};
+}
+template <typename Char> FMT_FUNC Char decimal_point_impl(locale_ref) {
+  return '.';
+}
+#endif
+
+FMT_FUNC auto write_loc(appender out, loc_value value,
+                        const format_specs<>& specs, locale_ref loc) -> bool {
+#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
+  auto locale = loc.get<std::locale>();
+  // We cannot use the num_put<char> facet because it may produce output in
+  // a wrong encoding.
+  using facet = format_facet<std::locale>;
+  if (std::has_facet<facet>(locale))
+    return std::use_facet<facet>(locale).put(out, value, specs);
+  return facet(locale).put(out, value, specs);
+#endif
+  return false;
+}
+}  // namespace detail
+
+template <typename Locale> typename Locale::id format_facet<Locale>::id;
+
+#ifndef FMT_STATIC_THOUSANDS_SEPARATOR
+template <typename Locale> format_facet<Locale>::format_facet(Locale& loc) {
+  auto& numpunct = std::use_facet<std::numpunct<char>>(loc);
+  grouping_ = numpunct.grouping();
+  if (!grouping_.empty()) separator_ = std::string(1, numpunct.thousands_sep());
+}
+
+template <>
+FMT_API FMT_FUNC auto format_facet<std::locale>::do_put(
+    appender out, loc_value val, const format_specs<>& specs) const -> bool {
+  return val.visit(
+      detail::loc_writer<>{out, specs, separator_, grouping_, decimal_point_});
+}
+#endif
+
+FMT_FUNC auto vsystem_error(int error_code, string_view fmt, format_args args)
+    -> std::system_error {
+  auto ec = std::error_code(error_code, std::generic_category());
+  return std::system_error(ec, vformat(fmt, args));
+}
+
+namespace detail {
+
+template <typename F>
+inline auto operator==(basic_fp<F> x, basic_fp<F> y) -> bool {
+  return x.f == y.f && x.e == y.e;
+}
+
+// Compilers should be able to optimize this into the ror instruction.
+FMT_CONSTEXPR inline auto rotr(uint32_t n, uint32_t r) noexcept -> uint32_t {
+  r &= 31;
+  return (n >> r) | (n << (32 - r));
+}
+FMT_CONSTEXPR inline auto rotr(uint64_t n, uint32_t r) noexcept -> uint64_t {
+  r &= 63;
+  return (n >> r) | (n << (64 - r));
+}
+
+// Implementation of Dragonbox algorithm: https://github.com/jk-jeon/dragonbox.
+namespace dragonbox {
+// Computes upper 64 bits of multiplication of a 32-bit unsigned integer and a
+// 64-bit unsigned integer.
+inline auto umul96_upper64(uint32_t x, uint64_t y) noexcept -> uint64_t {
+  return umul128_upper64(static_cast<uint64_t>(x) << 32, y);
+}
+
+// Computes lower 128 bits of multiplication of a 64-bit unsigned integer and a
+// 128-bit unsigned integer.
+inline auto umul192_lower128(uint64_t x, uint128_fallback y) noexcept
+    -> uint128_fallback {
+  uint64_t high = x * y.high();
+  uint128_fallback high_low = umul128(x, y.low());
+  return {high + high_low.high(), high_low.low()};
+}
+
+// Computes lower 64 bits of multiplication of a 32-bit unsigned integer and a
+// 64-bit unsigned integer.
+inline auto umul96_lower64(uint32_t x, uint64_t y) noexcept -> uint64_t {
+  return x * y;
+}
+
+// Various fast log computations.
+inline auto floor_log10_pow2_minus_log10_4_over_3(int e) noexcept -> int {
+  FMT_ASSERT(e <= 2936 && e >= -2985, "too large exponent");
+  return (e * 631305 - 261663) >> 21;
+}
+
+FMT_INLINE_VARIABLE constexpr struct {
+  uint32_t divisor;
+  int shift_amount;
+} div_small_pow10_infos[] = {{10, 16}, {100, 16}};
+
+// Replaces n by floor(n / pow(10, N)) returning true if and only if n is
+// divisible by pow(10, N).
+// Precondition: n <= pow(10, N + 1).
+template <int N>
+auto check_divisibility_and_divide_by_pow10(uint32_t& n) noexcept -> bool {
+  // The numbers below are chosen such that:
+  //   1. floor(n/d) = floor(nm / 2^k) where d=10 or d=100,
+  //   2. nm mod 2^k < m if and only if n is divisible by d,
+  // where m is magic_number, k is shift_amount
+  // and d is divisor.
+  //
+  // Item 1 is a common technique of replacing division by a constant with
+  // multiplication, see e.g. "Division by Invariant Integers Using
+  // Multiplication" by Granlund and Montgomery (1994). magic_number (m) is set
+  // to ceil(2^k/d) for large enough k.
+  // The idea for item 2 originates from Schubfach.
+  constexpr auto info = div_small_pow10_infos[N - 1];
+  FMT_ASSERT(n <= info.divisor * 10, "n is too large");
+  constexpr uint32_t magic_number =
+      (1u << info.shift_amount) / info.divisor + 1;
+  n *= magic_number;
+  const uint32_t comparison_mask = (1u << info.shift_amount) - 1;
+  bool result = (n & comparison_mask) < magic_number;
+  n >>= info.shift_amount;
+  return result;
+}
+
+// Computes floor(n / pow(10, N)) for small n and N.
+// Precondition: n <= pow(10, N + 1).
+template <int N> auto small_division_by_pow10(uint32_t n) noexcept -> uint32_t {
+  constexpr auto info = div_small_pow10_infos[N - 1];
+  FMT_ASSERT(n <= info.divisor * 10, "n is too large");
+  constexpr uint32_t magic_number =
+      (1u << info.shift_amount) / info.divisor + 1;
+  return (n * magic_number) >> info.shift_amount;
+}
+
+// Computes floor(n / 10^(kappa + 1)) (float)
+inline auto divide_by_10_to_kappa_plus_1(uint32_t n) noexcept -> uint32_t {
+  // 1374389535 = ceil(2^37/100)
+  return static_cast<uint32_t>((static_cast<uint64_t>(n) * 1374389535) >> 37);
+}
+// Computes floor(n / 10^(kappa + 1)) (double)
+inline auto divide_by_10_to_kappa_plus_1(uint64_t n) noexcept -> uint64_t {
+  // 2361183241434822607 = ceil(2^(64+7)/1000)
+  return umul128_upper64(n, 2361183241434822607ull) >> 7;
+}
+
+// Various subroutines using pow10 cache
+template <typename T> struct cache_accessor;
+
+template <> struct cache_accessor<float> {
+  using carrier_uint = float_info<float>::carrier_uint;
+  using cache_entry_type = uint64_t;
+
+  static auto get_cached_power(int k) noexcept -> uint64_t {
+    FMT_ASSERT(k >= float_info<float>::min_k && k <= float_info<float>::max_k,
+               "k is out of range");
+    static constexpr const uint64_t pow10_significands[] = {
+        0x81ceb32c4b43fcf5, 0xa2425ff75e14fc32, 0xcad2f7f5359a3b3f,
+        0xfd87b5f28300ca0e, 0x9e74d1b791e07e49, 0xc612062576589ddb,
+        0xf79687aed3eec552, 0x9abe14cd44753b53, 0xc16d9a0095928a28,
+        0xf1c90080baf72cb2, 0x971da05074da7bef, 0xbce5086492111aeb,
+        0xec1e4a7db69561a6, 0x9392ee8e921d5d08, 0xb877aa3236a4b44a,
+        0xe69594bec44de15c, 0x901d7cf73ab0acda, 0xb424dc35095cd810,
+        0xe12e13424bb40e14, 0x8cbccc096f5088cc, 0xafebff0bcb24aaff,
+        0xdbe6fecebdedd5bf, 0x89705f4136b4a598, 0xabcc77118461cefd,
+        0xd6bf94d5e57a42bd, 0x8637bd05af6c69b6, 0xa7c5ac471b478424,
+        0xd1b71758e219652c, 0x83126e978d4fdf3c, 0xa3d70a3d70a3d70b,
+        0xcccccccccccccccd, 0x8000000000000000, 0xa000000000000000,
+        0xc800000000000000, 0xfa00000000000000, 0x9c40000000000000,
+        0xc350000000000000, 0xf424000000000000, 0x9896800000000000,
+        0xbebc200000000000, 0xee6b280000000000, 0x9502f90000000000,
+        0xba43b74000000000, 0xe8d4a51000000000, 0x9184e72a00000000,
+        0xb5e620f480000000, 0xe35fa931a0000000, 0x8e1bc9bf04000000,
+        0xb1a2bc2ec5000000, 0xde0b6b3a76400000, 0x8ac7230489e80000,
+        0xad78ebc5ac620000, 0xd8d726b7177a8000, 0x878678326eac9000,
+        0xa968163f0a57b400, 0xd3c21bcecceda100, 0x84595161401484a0,
+        0xa56fa5b99019a5c8, 0xcecb8f27f4200f3a, 0x813f3978f8940985,
+        0xa18f07d736b90be6, 0xc9f2c9cd04674edf, 0xfc6f7c4045812297,
+        0x9dc5ada82b70b59e, 0xc5371912364ce306, 0xf684df56c3e01bc7,
+        0x9a130b963a6c115d, 0xc097ce7bc90715b4, 0xf0bdc21abb48db21,
+        0x96769950b50d88f5, 0xbc143fa4e250eb32, 0xeb194f8e1ae525fe,
+        0x92efd1b8d0cf37bf, 0xb7abc627050305ae, 0xe596b7b0c643c71a,
+        0x8f7e32ce7bea5c70, 0xb35dbf821ae4f38c, 0xe0352f62a19e306f};
+    return pow10_significands[k - float_info<float>::min_k];
+  }
+
+  struct compute_mul_result {
+    carrier_uint result;
+    bool is_integer;
+  };
+  struct compute_mul_parity_result {
+    bool parity;
+    bool is_integer;
+  };
+
+  static auto compute_mul(carrier_uint u,
+                          const cache_entry_type& cache) noexcept
+      -> compute_mul_result {
+    auto r = umul96_upper64(u, cache);
+    return {static_cast<carrier_uint>(r >> 32),
+            static_cast<carrier_uint>(r) == 0};
+  }
+
+  static auto compute_delta(const cache_entry_type& cache, int beta) noexcept
+      -> uint32_t {
+    return static_cast<uint32_t>(cache >> (64 - 1 - beta));
+  }
+
+  static auto compute_mul_parity(carrier_uint two_f,
+                                 const cache_entry_type& cache,
+                                 int beta) noexcept
+      -> compute_mul_parity_result {
+    FMT_ASSERT(beta >= 1, "");
+    FMT_ASSERT(beta < 64, "");
+
+    auto r = umul96_lower64(two_f, cache);
+    return {((r >> (64 - beta)) & 1) != 0,
+            static_cast<uint32_t>(r >> (32 - beta)) == 0};
+  }
+
+  static auto compute_left_endpoint_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return static_cast<carrier_uint>(
+        (cache - (cache >> (num_significand_bits<float>() + 2))) >>
+        (64 - num_significand_bits<float>() - 1 - beta));
+  }
+
+  static auto compute_right_endpoint_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return static_cast<carrier_uint>(
+        (cache + (cache >> (num_significand_bits<float>() + 1))) >>
+        (64 - num_significand_bits<float>() - 1 - beta));
+  }
+
+  static auto compute_round_up_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return (static_cast<carrier_uint>(
+                cache >> (64 - num_significand_bits<float>() - 2 - beta)) +
+            1) /
+           2;
+  }
+};
+
+template <> struct cache_accessor<double> {
+  using carrier_uint = float_info<double>::carrier_uint;
+  using cache_entry_type = uint128_fallback;
+
+  static auto get_cached_power(int k) noexcept -> uint128_fallback {
+    FMT_ASSERT(k >= float_info<double>::min_k && k <= float_info<double>::max_k,
+               "k is out of range");
+
+    static constexpr const uint128_fallback pow10_significands[] = {
+#if FMT_USE_FULL_CACHE_DRAGONBOX
+      {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
+      {0x9faacf3df73609b1, 0x77b191618c54e9ad},
+      {0xc795830d75038c1d, 0xd59df5b9ef6a2418},
+      {0xf97ae3d0d2446f25, 0x4b0573286b44ad1e},
+      {0x9becce62836ac577, 0x4ee367f9430aec33},
+      {0xc2e801fb244576d5, 0x229c41f793cda740},
+      {0xf3a20279ed56d48a, 0x6b43527578c11110},
+      {0x9845418c345644d6, 0x830a13896b78aaaa},
+      {0xbe5691ef416bd60c, 0x23cc986bc656d554},
+      {0xedec366b11c6cb8f, 0x2cbfbe86b7ec8aa9},
+      {0x94b3a202eb1c3f39, 0x7bf7d71432f3d6aa},
+      {0xb9e08a83a5e34f07, 0xdaf5ccd93fb0cc54},
+      {0xe858ad248f5c22c9, 0xd1b3400f8f9cff69},
+      {0x91376c36d99995be, 0x23100809b9c21fa2},
+      {0xb58547448ffffb2d, 0xabd40a0c2832a78b},
+      {0xe2e69915b3fff9f9, 0x16c90c8f323f516d},
+      {0x8dd01fad907ffc3b, 0xae3da7d97f6792e4},
+      {0xb1442798f49ffb4a, 0x99cd11cfdf41779d},
+      {0xdd95317f31c7fa1d, 0x40405643d711d584},
+      {0x8a7d3eef7f1cfc52, 0x482835ea666b2573},
+      {0xad1c8eab5ee43b66, 0xda3243650005eed0},
+      {0xd863b256369d4a40, 0x90bed43e40076a83},
+      {0x873e4f75e2224e68, 0x5a7744a6e804a292},
+      {0xa90de3535aaae202, 0x711515d0a205cb37},
+      {0xd3515c2831559a83, 0x0d5a5b44ca873e04},
+      {0x8412d9991ed58091, 0xe858790afe9486c3},
+      {0xa5178fff668ae0b6, 0x626e974dbe39a873},
+      {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
+      {0x80fa687f881c7f8e, 0x7ce66634bc9d0b9a},
+      {0xa139029f6a239f72, 0x1c1fffc1ebc44e81},
+      {0xc987434744ac874e, 0xa327ffb266b56221},
+      {0xfbe9141915d7a922, 0x4bf1ff9f0062baa9},
+      {0x9d71ac8fada6c9b5, 0x6f773fc3603db4aa},
+      {0xc4ce17b399107c22, 0xcb550fb4384d21d4},
+      {0xf6019da07f549b2b, 0x7e2a53a146606a49},
+      {0x99c102844f94e0fb, 0x2eda7444cbfc426e},
+      {0xc0314325637a1939, 0xfa911155fefb5309},
+      {0xf03d93eebc589f88, 0x793555ab7eba27cb},
+      {0x96267c7535b763b5, 0x4bc1558b2f3458df},
+      {0xbbb01b9283253ca2, 0x9eb1aaedfb016f17},
+      {0xea9c227723ee8bcb, 0x465e15a979c1cadd},
+      {0x92a1958a7675175f, 0x0bfacd89ec191eca},
+      {0xb749faed14125d36, 0xcef980ec671f667c},
+      {0xe51c79a85916f484, 0x82b7e12780e7401b},
+      {0x8f31cc0937ae58d2, 0xd1b2ecb8b0908811},
+      {0xb2fe3f0b8599ef07, 0x861fa7e6dcb4aa16},
+      {0xdfbdcece67006ac9, 0x67a791e093e1d49b},
+      {0x8bd6a141006042bd, 0xe0c8bb2c5c6d24e1},
+      {0xaecc49914078536d, 0x58fae9f773886e19},
+      {0xda7f5bf590966848, 0xaf39a475506a899f},
+      {0x888f99797a5e012d, 0x6d8406c952429604},
+      {0xaab37fd7d8f58178, 0xc8e5087ba6d33b84},
+      {0xd5605fcdcf32e1d6, 0xfb1e4a9a90880a65},
+      {0x855c3be0a17fcd26, 0x5cf2eea09a550680},
+      {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
+      {0xd0601d8efc57b08b, 0xf13b94daf124da27},
+      {0x823c12795db6ce57, 0x76c53d08d6b70859},
+      {0xa2cb1717b52481ed, 0x54768c4b0c64ca6f},
+      {0xcb7ddcdda26da268, 0xa9942f5dcf7dfd0a},
+      {0xfe5d54150b090b02, 0xd3f93b35435d7c4d},
+      {0x9efa548d26e5a6e1, 0xc47bc5014a1a6db0},
+      {0xc6b8e9b0709f109a, 0x359ab6419ca1091c},
+      {0xf867241c8cc6d4c0, 0xc30163d203c94b63},
+      {0x9b407691d7fc44f8, 0x79e0de63425dcf1e},
+      {0xc21094364dfb5636, 0x985915fc12f542e5},
+      {0xf294b943e17a2bc4, 0x3e6f5b7b17b2939e},
+      {0x979cf3ca6cec5b5a, 0xa705992ceecf9c43},
+      {0xbd8430bd08277231, 0x50c6ff782a838354},
+      {0xece53cec4a314ebd, 0xa4f8bf5635246429},
+      {0x940f4613ae5ed136, 0x871b7795e136be9a},
+      {0xb913179899f68584, 0x28e2557b59846e40},
+      {0xe757dd7ec07426e5, 0x331aeada2fe589d0},
+      {0x9096ea6f3848984f, 0x3ff0d2c85def7622},
+      {0xb4bca50b065abe63, 0x0fed077a756b53aa},
+      {0xe1ebce4dc7f16dfb, 0xd3e8495912c62895},
+      {0x8d3360f09cf6e4bd, 0x64712dd7abbbd95d},
+      {0xb080392cc4349dec, 0xbd8d794d96aacfb4},
+      {0xdca04777f541c567, 0xecf0d7a0fc5583a1},
+      {0x89e42caaf9491b60, 0xf41686c49db57245},
+      {0xac5d37d5b79b6239, 0x311c2875c522ced6},
+      {0xd77485cb25823ac7, 0x7d633293366b828c},
+      {0x86a8d39ef77164bc, 0xae5dff9c02033198},
+      {0xa8530886b54dbdeb, 0xd9f57f830283fdfd},
+      {0xd267caa862a12d66, 0xd072df63c324fd7c},
+      {0x8380dea93da4bc60, 0x4247cb9e59f71e6e},
+      {0xa46116538d0deb78, 0x52d9be85f074e609},
+      {0xcd795be870516656, 0x67902e276c921f8c},
+      {0x806bd9714632dff6, 0x00ba1cd8a3db53b7},
+      {0xa086cfcd97bf97f3, 0x80e8a40eccd228a5},
+      {0xc8a883c0fdaf7df0, 0x6122cd128006b2ce},
+      {0xfad2a4b13d1b5d6c, 0x796b805720085f82},
+      {0x9cc3a6eec6311a63, 0xcbe3303674053bb1},
+      {0xc3f490aa77bd60fc, 0xbedbfc4411068a9d},
+      {0xf4f1b4d515acb93b, 0xee92fb5515482d45},
+      {0x991711052d8bf3c5, 0x751bdd152d4d1c4b},
+      {0xbf5cd54678eef0b6, 0xd262d45a78a0635e},
+      {0xef340a98172aace4, 0x86fb897116c87c35},
+      {0x9580869f0e7aac0e, 0xd45d35e6ae3d4da1},
+      {0xbae0a846d2195712, 0x8974836059cca10a},
+      {0xe998d258869facd7, 0x2bd1a438703fc94c},
+      {0x91ff83775423cc06, 0x7b6306a34627ddd0},
+      {0xb67f6455292cbf08, 0x1a3bc84c17b1d543},
+      {0xe41f3d6a7377eeca, 0x20caba5f1d9e4a94},
+      {0x8e938662882af53e, 0x547eb47b7282ee9d},
+      {0xb23867fb2a35b28d, 0xe99e619a4f23aa44},
+      {0xdec681f9f4c31f31, 0x6405fa00e2ec94d5},
+      {0x8b3c113c38f9f37e, 0xde83bc408dd3dd05},
+      {0xae0b158b4738705e, 0x9624ab50b148d446},
+      {0xd98ddaee19068c76, 0x3badd624dd9b0958},
+      {0x87f8a8d4cfa417c9, 0xe54ca5d70a80e5d7},
+      {0xa9f6d30a038d1dbc, 0x5e9fcf4ccd211f4d},
+      {0xd47487cc8470652b, 0x7647c32000696720},
+      {0x84c8d4dfd2c63f3b, 0x29ecd9f40041e074},
+      {0xa5fb0a17c777cf09, 0xf468107100525891},
+      {0xcf79cc9db955c2cc, 0x7182148d4066eeb5},
+      {0x81ac1fe293d599bf, 0xc6f14cd848405531},
+      {0xa21727db38cb002f, 0xb8ada00e5a506a7d},
+      {0xca9cf1d206fdc03b, 0xa6d90811f0e4851d},
+      {0xfd442e4688bd304a, 0x908f4a166d1da664},
+      {0x9e4a9cec15763e2e, 0x9a598e4e043287ff},
+      {0xc5dd44271ad3cdba, 0x40eff1e1853f29fe},
+      {0xf7549530e188c128, 0xd12bee59e68ef47d},
+      {0x9a94dd3e8cf578b9, 0x82bb74f8301958cf},
+      {0xc13a148e3032d6e7, 0xe36a52363c1faf02},
+      {0xf18899b1bc3f8ca1, 0xdc44e6c3cb279ac2},
+      {0x96f5600f15a7b7e5, 0x29ab103a5ef8c0ba},
+      {0xbcb2b812db11a5de, 0x7415d448f6b6f0e8},
+      {0xebdf661791d60f56, 0x111b495b3464ad22},
+      {0x936b9fcebb25c995, 0xcab10dd900beec35},
+      {0xb84687c269ef3bfb, 0x3d5d514f40eea743},
+      {0xe65829b3046b0afa, 0x0cb4a5a3112a5113},
+      {0x8ff71a0fe2c2e6dc, 0x47f0e785eaba72ac},
+      {0xb3f4e093db73a093, 0x59ed216765690f57},
+      {0xe0f218b8d25088b8, 0x306869c13ec3532d},
+      {0x8c974f7383725573, 0x1e414218c73a13fc},
+      {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
+      {0xdbac6c247d62a583, 0xdf45f746b74abf3a},
+      {0x894bc396ce5da772, 0x6b8bba8c328eb784},
+      {0xab9eb47c81f5114f, 0x066ea92f3f326565},
+      {0xd686619ba27255a2, 0xc80a537b0efefebe},
+      {0x8613fd0145877585, 0xbd06742ce95f5f37},
+      {0xa798fc4196e952e7, 0x2c48113823b73705},
+      {0xd17f3b51fca3a7a0, 0xf75a15862ca504c6},
+      {0x82ef85133de648c4, 0x9a984d73dbe722fc},
+      {0xa3ab66580d5fdaf5, 0xc13e60d0d2e0ebbb},
+      {0xcc963fee10b7d1b3, 0x318df905079926a9},
+      {0xffbbcfe994e5c61f, 0xfdf17746497f7053},
+      {0x9fd561f1fd0f9bd3, 0xfeb6ea8bedefa634},
+      {0xc7caba6e7c5382c8, 0xfe64a52ee96b8fc1},
+      {0xf9bd690a1b68637b, 0x3dfdce7aa3c673b1},
+      {0x9c1661a651213e2d, 0x06bea10ca65c084f},
+      {0xc31bfa0fe5698db8, 0x486e494fcff30a63},
+      {0xf3e2f893dec3f126, 0x5a89dba3c3efccfb},
+      {0x986ddb5c6b3a76b7, 0xf89629465a75e01d},
+      {0xbe89523386091465, 0xf6bbb397f1135824},
+      {0xee2ba6c0678b597f, 0x746aa07ded582e2d},
+      {0x94db483840b717ef, 0xa8c2a44eb4571cdd},
+      {0xba121a4650e4ddeb, 0x92f34d62616ce414},
+      {0xe896a0d7e51e1566, 0x77b020baf9c81d18},
+      {0x915e2486ef32cd60, 0x0ace1474dc1d122f},
+      {0xb5b5ada8aaff80b8, 0x0d819992132456bb},
+      {0xe3231912d5bf60e6, 0x10e1fff697ed6c6a},
+      {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
+      {0xb1736b96b6fd83b3, 0xbd308ff8a6b17cb3},
+      {0xddd0467c64bce4a0, 0xac7cb3f6d05ddbdf},
+      {0x8aa22c0dbef60ee4, 0x6bcdf07a423aa96c},
+      {0xad4ab7112eb3929d, 0x86c16c98d2c953c7},
+      {0xd89d64d57a607744, 0xe871c7bf077ba8b8},
+      {0x87625f056c7c4a8b, 0x11471cd764ad4973},
+      {0xa93af6c6c79b5d2d, 0xd598e40d3dd89bd0},
+      {0xd389b47879823479, 0x4aff1d108d4ec2c4},
+      {0x843610cb4bf160cb, 0xcedf722a585139bb},
+      {0xa54394fe1eedb8fe, 0xc2974eb4ee658829},
+      {0xce947a3da6a9273e, 0x733d226229feea33},
+      {0x811ccc668829b887, 0x0806357d5a3f5260},
+      {0xa163ff802a3426a8, 0xca07c2dcb0cf26f8},
+      {0xc9bcff6034c13052, 0xfc89b393dd02f0b6},
+      {0xfc2c3f3841f17c67, 0xbbac2078d443ace3},
+      {0x9d9ba7832936edc0, 0xd54b944b84aa4c0e},
+      {0xc5029163f384a931, 0x0a9e795e65d4df12},
+      {0xf64335bcf065d37d, 0x4d4617b5ff4a16d6},
+      {0x99ea0196163fa42e, 0x504bced1bf8e4e46},
+      {0xc06481fb9bcf8d39, 0xe45ec2862f71e1d7},
+      {0xf07da27a82c37088, 0x5d767327bb4e5a4d},
+      {0x964e858c91ba2655, 0x3a6a07f8d510f870},
+      {0xbbe226efb628afea, 0x890489f70a55368c},
+      {0xeadab0aba3b2dbe5, 0x2b45ac74ccea842f},
+      {0x92c8ae6b464fc96f, 0x3b0b8bc90012929e},
+      {0xb77ada0617e3bbcb, 0x09ce6ebb40173745},
+      {0xe55990879ddcaabd, 0xcc420a6a101d0516},
+      {0x8f57fa54c2a9eab6, 0x9fa946824a12232e},
+      {0xb32df8e9f3546564, 0x47939822dc96abfa},
+      {0xdff9772470297ebd, 0x59787e2b93bc56f8},
+      {0x8bfbea76c619ef36, 0x57eb4edb3c55b65b},
+      {0xaefae51477a06b03, 0xede622920b6b23f2},
+      {0xdab99e59958885c4, 0xe95fab368e45ecee},
+      {0x88b402f7fd75539b, 0x11dbcb0218ebb415},
+      {0xaae103b5fcd2a881, 0xd652bdc29f26a11a},
+      {0xd59944a37c0752a2, 0x4be76d3346f04960},
+      {0x857fcae62d8493a5, 0x6f70a4400c562ddc},
+      {0xa6dfbd9fb8e5b88e, 0xcb4ccd500f6bb953},
+      {0xd097ad07a71f26b2, 0x7e2000a41346a7a8},
+      {0x825ecc24c873782f, 0x8ed400668c0c28c9},
+      {0xa2f67f2dfa90563b, 0x728900802f0f32fb},
+      {0xcbb41ef979346bca, 0x4f2b40a03ad2ffba},
+      {0xfea126b7d78186bc, 0xe2f610c84987bfa9},
+      {0x9f24b832e6b0f436, 0x0dd9ca7d2df4d7ca},
+      {0xc6ede63fa05d3143, 0x91503d1c79720dbc},
+      {0xf8a95fcf88747d94, 0x75a44c6397ce912b},
+      {0x9b69dbe1b548ce7c, 0xc986afbe3ee11abb},
+      {0xc24452da229b021b, 0xfbe85badce996169},
+      {0xf2d56790ab41c2a2, 0xfae27299423fb9c4},
+      {0x97c560ba6b0919a5, 0xdccd879fc967d41b},
+      {0xbdb6b8e905cb600f, 0x5400e987bbc1c921},
+      {0xed246723473e3813, 0x290123e9aab23b69},
+      {0x9436c0760c86e30b, 0xf9a0b6720aaf6522},
+      {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
+      {0xe7958cb87392c2c2, 0xb60b1d1230b20e05},
+      {0x90bd77f3483bb9b9, 0xb1c6f22b5e6f48c3},
+      {0xb4ecd5f01a4aa828, 0x1e38aeb6360b1af4},
+      {0xe2280b6c20dd5232, 0x25c6da63c38de1b1},
+      {0x8d590723948a535f, 0x579c487e5a38ad0f},
+      {0xb0af48ec79ace837, 0x2d835a9df0c6d852},
+      {0xdcdb1b2798182244, 0xf8e431456cf88e66},
+      {0x8a08f0f8bf0f156b, 0x1b8e9ecb641b5900},
+      {0xac8b2d36eed2dac5, 0xe272467e3d222f40},
+      {0xd7adf884aa879177, 0x5b0ed81dcc6abb10},
+      {0x86ccbb52ea94baea, 0x98e947129fc2b4ea},
+      {0xa87fea27a539e9a5, 0x3f2398d747b36225},
+      {0xd29fe4b18e88640e, 0x8eec7f0d19a03aae},
+      {0x83a3eeeef9153e89, 0x1953cf68300424ad},
+      {0xa48ceaaab75a8e2b, 0x5fa8c3423c052dd8},
+      {0xcdb02555653131b6, 0x3792f412cb06794e},
+      {0x808e17555f3ebf11, 0xe2bbd88bbee40bd1},
+      {0xa0b19d2ab70e6ed6, 0x5b6aceaeae9d0ec5},
+      {0xc8de047564d20a8b, 0xf245825a5a445276},
+      {0xfb158592be068d2e, 0xeed6e2f0f0d56713},
+      {0x9ced737bb6c4183d, 0x55464dd69685606c},
+      {0xc428d05aa4751e4c, 0xaa97e14c3c26b887},
+      {0xf53304714d9265df, 0xd53dd99f4b3066a9},
+      {0x993fe2c6d07b7fab, 0xe546a8038efe402a},
+      {0xbf8fdb78849a5f96, 0xde98520472bdd034},
+      {0xef73d256a5c0f77c, 0x963e66858f6d4441},
+      {0x95a8637627989aad, 0xdde7001379a44aa9},
+      {0xbb127c53b17ec159, 0x5560c018580d5d53},
+      {0xe9d71b689dde71af, 0xaab8f01e6e10b4a7},
+      {0x9226712162ab070d, 0xcab3961304ca70e9},
+      {0xb6b00d69bb55c8d1, 0x3d607b97c5fd0d23},
+      {0xe45c10c42a2b3b05, 0x8cb89a7db77c506b},
+      {0x8eb98a7a9a5b04e3, 0x77f3608e92adb243},
+      {0xb267ed1940f1c61c, 0x55f038b237591ed4},
+      {0xdf01e85f912e37a3, 0x6b6c46dec52f6689},
+      {0x8b61313bbabce2c6, 0x2323ac4b3b3da016},
+      {0xae397d8aa96c1b77, 0xabec975e0a0d081b},
+      {0xd9c7dced53c72255, 0x96e7bd358c904a22},
+      {0x881cea14545c7575, 0x7e50d64177da2e55},
+      {0xaa242499697392d2, 0xdde50bd1d5d0b9ea},
+      {0xd4ad2dbfc3d07787, 0x955e4ec64b44e865},
+      {0x84ec3c97da624ab4, 0xbd5af13bef0b113f},
+      {0xa6274bbdd0fadd61, 0xecb1ad8aeacdd58f},
+      {0xcfb11ead453994ba, 0x67de18eda5814af3},
+      {0x81ceb32c4b43fcf4, 0x80eacf948770ced8},
+      {0xa2425ff75e14fc31, 0xa1258379a94d028e},
+      {0xcad2f7f5359a3b3e, 0x096ee45813a04331},
+      {0xfd87b5f28300ca0d, 0x8bca9d6e188853fd},
+      {0x9e74d1b791e07e48, 0x775ea264cf55347e},
+      {0xc612062576589dda, 0x95364afe032a819e},
+      {0xf79687aed3eec551, 0x3a83ddbd83f52205},
+      {0x9abe14cd44753b52, 0xc4926a9672793543},
+      {0xc16d9a0095928a27, 0x75b7053c0f178294},
+      {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
+      {0x971da05074da7bee, 0xd3f6fc16ebca5e04},
+      {0xbce5086492111aea, 0x88f4bb1ca6bcf585},
+      {0xec1e4a7db69561a5, 0x2b31e9e3d06c32e6},
+      {0x9392ee8e921d5d07, 0x3aff322e62439fd0},
+      {0xb877aa3236a4b449, 0x09befeb9fad487c3},
+      {0xe69594bec44de15b, 0x4c2ebe687989a9b4},
+      {0x901d7cf73ab0acd9, 0x0f9d37014bf60a11},
+      {0xb424dc35095cd80f, 0x538484c19ef38c95},
+      {0xe12e13424bb40e13, 0x2865a5f206b06fba},
+      {0x8cbccc096f5088cb, 0xf93f87b7442e45d4},
+      {0xafebff0bcb24aafe, 0xf78f69a51539d749},
+      {0xdbe6fecebdedd5be, 0xb573440e5a884d1c},
+      {0x89705f4136b4a597, 0x31680a88f8953031},
+      {0xabcc77118461cefc, 0xfdc20d2b36ba7c3e},
+      {0xd6bf94d5e57a42bc, 0x3d32907604691b4d},
+      {0x8637bd05af6c69b5, 0xa63f9a49c2c1b110},
+      {0xa7c5ac471b478423, 0x0fcf80dc33721d54},
+      {0xd1b71758e219652b, 0xd3c36113404ea4a9},
+      {0x83126e978d4fdf3b, 0x645a1cac083126ea},
+      {0xa3d70a3d70a3d70a, 0x3d70a3d70a3d70a4},
+      {0xcccccccccccccccc, 0xcccccccccccccccd},
+      {0x8000000000000000, 0x0000000000000000},
+      {0xa000000000000000, 0x0000000000000000},
+      {0xc800000000000000, 0x0000000000000000},
+      {0xfa00000000000000, 0x0000000000000000},
+      {0x9c40000000000000, 0x0000000000000000},
+      {0xc350000000000000, 0x0000000000000000},
+      {0xf424000000000000, 0x0000000000000000},
+      {0x9896800000000000, 0x0000000000000000},
+      {0xbebc200000000000, 0x0000000000000000},
+      {0xee6b280000000000, 0x0000000000000000},
+      {0x9502f90000000000, 0x0000000000000000},
+      {0xba43b74000000000, 0x0000000000000000},
+      {0xe8d4a51000000000, 0x0000000000000000},
+      {0x9184e72a00000000, 0x0000000000000000},
+      {0xb5e620f480000000, 0x0000000000000000},
+      {0xe35fa931a0000000, 0x0000000000000000},
+      {0x8e1bc9bf04000000, 0x0000000000000000},
+      {0xb1a2bc2ec5000000, 0x0000000000000000},
+      {0xde0b6b3a76400000, 0x0000000000000000},
+      {0x8ac7230489e80000, 0x0000000000000000},
+      {0xad78ebc5ac620000, 0x0000000000000000},
+      {0xd8d726b7177a8000, 0x0000000000000000},
+      {0x878678326eac9000, 0x0000000000000000},
+      {0xa968163f0a57b400, 0x0000000000000000},
+      {0xd3c21bcecceda100, 0x0000000000000000},
+      {0x84595161401484a0, 0x0000000000000000},
+      {0xa56fa5b99019a5c8, 0x0000000000000000},
+      {0xcecb8f27f4200f3a, 0x0000000000000000},
+      {0x813f3978f8940984, 0x4000000000000000},
+      {0xa18f07d736b90be5, 0x5000000000000000},
+      {0xc9f2c9cd04674ede, 0xa400000000000000},
+      {0xfc6f7c4045812296, 0x4d00000000000000},
+      {0x9dc5ada82b70b59d, 0xf020000000000000},
+      {0xc5371912364ce305, 0x6c28000000000000},
+      {0xf684df56c3e01bc6, 0xc732000000000000},
+      {0x9a130b963a6c115c, 0x3c7f400000000000},
+      {0xc097ce7bc90715b3, 0x4b9f100000000000},
+      {0xf0bdc21abb48db20, 0x1e86d40000000000},
+      {0x96769950b50d88f4, 0x1314448000000000},
+      {0xbc143fa4e250eb31, 0x17d955a000000000},
+      {0xeb194f8e1ae525fd, 0x5dcfab0800000000},
+      {0x92efd1b8d0cf37be, 0x5aa1cae500000000},
+      {0xb7abc627050305ad, 0xf14a3d9e40000000},
+      {0xe596b7b0c643c719, 0x6d9ccd05d0000000},
+      {0x8f7e32ce7bea5c6f, 0xe4820023a2000000},
+      {0xb35dbf821ae4f38b, 0xdda2802c8a800000},
+      {0xe0352f62a19e306e, 0xd50b2037ad200000},
+      {0x8c213d9da502de45, 0x4526f422cc340000},
+      {0xaf298d050e4395d6, 0x9670b12b7f410000},
+      {0xdaf3f04651d47b4c, 0x3c0cdd765f114000},
+      {0x88d8762bf324cd0f, 0xa5880a69fb6ac800},
+      {0xab0e93b6efee0053, 0x8eea0d047a457a00},
+      {0xd5d238a4abe98068, 0x72a4904598d6d880},
+      {0x85a36366eb71f041, 0x47a6da2b7f864750},
+      {0xa70c3c40a64e6c51, 0x999090b65f67d924},
+      {0xd0cf4b50cfe20765, 0xfff4b4e3f741cf6d},
+      {0x82818f1281ed449f, 0xbff8f10e7a8921a5},
+      {0xa321f2d7226895c7, 0xaff72d52192b6a0e},
+      {0xcbea6f8ceb02bb39, 0x9bf4f8a69f764491},
+      {0xfee50b7025c36a08, 0x02f236d04753d5b5},
+      {0x9f4f2726179a2245, 0x01d762422c946591},
+      {0xc722f0ef9d80aad6, 0x424d3ad2b7b97ef6},
+      {0xf8ebad2b84e0d58b, 0xd2e0898765a7deb3},
+      {0x9b934c3b330c8577, 0x63cc55f49f88eb30},
+      {0xc2781f49ffcfa6d5, 0x3cbf6b71c76b25fc},
+      {0xf316271c7fc3908a, 0x8bef464e3945ef7b},
+      {0x97edd871cfda3a56, 0x97758bf0e3cbb5ad},
+      {0xbde94e8e43d0c8ec, 0x3d52eeed1cbea318},
+      {0xed63a231d4c4fb27, 0x4ca7aaa863ee4bde},
+      {0x945e455f24fb1cf8, 0x8fe8caa93e74ef6b},
+      {0xb975d6b6ee39e436, 0xb3e2fd538e122b45},
+      {0xe7d34c64a9c85d44, 0x60dbbca87196b617},
+      {0x90e40fbeea1d3a4a, 0xbc8955e946fe31ce},
+      {0xb51d13aea4a488dd, 0x6babab6398bdbe42},
+      {0xe264589a4dcdab14, 0xc696963c7eed2dd2},
+      {0x8d7eb76070a08aec, 0xfc1e1de5cf543ca3},
+      {0xb0de65388cc8ada8, 0x3b25a55f43294bcc},
+      {0xdd15fe86affad912, 0x49ef0eb713f39ebf},
+      {0x8a2dbf142dfcc7ab, 0x6e3569326c784338},
+      {0xacb92ed9397bf996, 0x49c2c37f07965405},
+      {0xd7e77a8f87daf7fb, 0xdc33745ec97be907},
+      {0x86f0ac99b4e8dafd, 0x69a028bb3ded71a4},
+      {0xa8acd7c0222311bc, 0xc40832ea0d68ce0d},
+      {0xd2d80db02aabd62b, 0xf50a3fa490c30191},
+      {0x83c7088e1aab65db, 0x792667c6da79e0fb},
+      {0xa4b8cab1a1563f52, 0x577001b891185939},
+      {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87},
+      {0x80b05e5ac60b6178, 0x544f8158315b05b5},
+      {0xa0dc75f1778e39d6, 0x696361ae3db1c722},
+      {0xc913936dd571c84c, 0x03bc3a19cd1e38ea},
+      {0xfb5878494ace3a5f, 0x04ab48a04065c724},
+      {0x9d174b2dcec0e47b, 0x62eb0d64283f9c77},
+      {0xc45d1df942711d9a, 0x3ba5d0bd324f8395},
+      {0xf5746577930d6500, 0xca8f44ec7ee3647a},
+      {0x9968bf6abbe85f20, 0x7e998b13cf4e1ecc},
+      {0xbfc2ef456ae276e8, 0x9e3fedd8c321a67f},
+      {0xefb3ab16c59b14a2, 0xc5cfe94ef3ea101f},
+      {0x95d04aee3b80ece5, 0xbba1f1d158724a13},
+      {0xbb445da9ca61281f, 0x2a8a6e45ae8edc98},
+      {0xea1575143cf97226, 0xf52d09d71a3293be},
+      {0x924d692ca61be758, 0x593c2626705f9c57},
+      {0xb6e0c377cfa2e12e, 0x6f8b2fb00c77836d},
+      {0xe498f455c38b997a, 0x0b6dfb9c0f956448},
+      {0x8edf98b59a373fec, 0x4724bd4189bd5ead},
+      {0xb2977ee300c50fe7, 0x58edec91ec2cb658},
+      {0xdf3d5e9bc0f653e1, 0x2f2967b66737e3ee},
+      {0x8b865b215899f46c, 0xbd79e0d20082ee75},
+      {0xae67f1e9aec07187, 0xecd8590680a3aa12},
+      {0xda01ee641a708de9, 0xe80e6f4820cc9496},
+      {0x884134fe908658b2, 0x3109058d147fdcde},
+      {0xaa51823e34a7eede, 0xbd4b46f0599fd416},
+      {0xd4e5e2cdc1d1ea96, 0x6c9e18ac7007c91b},
+      {0x850fadc09923329e, 0x03e2cf6bc604ddb1},
+      {0xa6539930bf6bff45, 0x84db8346b786151d},
+      {0xcfe87f7cef46ff16, 0xe612641865679a64},
+      {0x81f14fae158c5f6e, 0x4fcb7e8f3f60c07f},
+      {0xa26da3999aef7749, 0xe3be5e330f38f09e},
+      {0xcb090c8001ab551c, 0x5cadf5bfd3072cc6},
+      {0xfdcb4fa002162a63, 0x73d9732fc7c8f7f7},
+      {0x9e9f11c4014dda7e, 0x2867e7fddcdd9afb},
+      {0xc646d63501a1511d, 0xb281e1fd541501b9},
+      {0xf7d88bc24209a565, 0x1f225a7ca91a4227},
+      {0x9ae757596946075f, 0x3375788de9b06959},
+      {0xc1a12d2fc3978937, 0x0052d6b1641c83af},
+      {0xf209787bb47d6b84, 0xc0678c5dbd23a49b},
+      {0x9745eb4d50ce6332, 0xf840b7ba963646e1},
+      {0xbd176620a501fbff, 0xb650e5a93bc3d899},
+      {0xec5d3fa8ce427aff, 0xa3e51f138ab4cebf},
+      {0x93ba47c980e98cdf, 0xc66f336c36b10138},
+      {0xb8a8d9bbe123f017, 0xb80b0047445d4185},
+      {0xe6d3102ad96cec1d, 0xa60dc059157491e6},
+      {0x9043ea1ac7e41392, 0x87c89837ad68db30},
+      {0xb454e4a179dd1877, 0x29babe4598c311fc},
+      {0xe16a1dc9d8545e94, 0xf4296dd6fef3d67b},
+      {0x8ce2529e2734bb1d, 0x1899e4a65f58660d},
+      {0xb01ae745b101e9e4, 0x5ec05dcff72e7f90},
+      {0xdc21a1171d42645d, 0x76707543f4fa1f74},
+      {0x899504ae72497eba, 0x6a06494a791c53a9},
+      {0xabfa45da0edbde69, 0x0487db9d17636893},
+      {0xd6f8d7509292d603, 0x45a9d2845d3c42b7},
+      {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3},
+      {0xa7f26836f282b732, 0x8e6cac7768d7141f},
+      {0xd1ef0244af2364ff, 0x3207d795430cd927},
+      {0x8335616aed761f1f, 0x7f44e6bd49e807b9},
+      {0xa402b9c5a8d3a6e7, 0x5f16206c9c6209a7},
+      {0xcd036837130890a1, 0x36dba887c37a8c10},
+      {0x802221226be55a64, 0xc2494954da2c978a},
+      {0xa02aa96b06deb0fd, 0xf2db9baa10b7bd6d},
+      {0xc83553c5c8965d3d, 0x6f92829494e5acc8},
+      {0xfa42a8b73abbf48c, 0xcb772339ba1f17fa},
+      {0x9c69a97284b578d7, 0xff2a760414536efc},
+      {0xc38413cf25e2d70d, 0xfef5138519684abb},
+      {0xf46518c2ef5b8cd1, 0x7eb258665fc25d6a},
+      {0x98bf2f79d5993802, 0xef2f773ffbd97a62},
+      {0xbeeefb584aff8603, 0xaafb550ffacfd8fb},
+      {0xeeaaba2e5dbf6784, 0x95ba2a53f983cf39},
+      {0x952ab45cfa97a0b2, 0xdd945a747bf26184},
+      {0xba756174393d88df, 0x94f971119aeef9e5},
+      {0xe912b9d1478ceb17, 0x7a37cd5601aab85e},
+      {0x91abb422ccb812ee, 0xac62e055c10ab33b},
+      {0xb616a12b7fe617aa, 0x577b986b314d600a},
+      {0xe39c49765fdf9d94, 0xed5a7e85fda0b80c},
+      {0x8e41ade9fbebc27d, 0x14588f13be847308},
+      {0xb1d219647ae6b31c, 0x596eb2d8ae258fc9},
+      {0xde469fbd99a05fe3, 0x6fca5f8ed9aef3bc},
+      {0x8aec23d680043bee, 0x25de7bb9480d5855},
+      {0xada72ccc20054ae9, 0xaf561aa79a10ae6b},
+      {0xd910f7ff28069da4, 0x1b2ba1518094da05},
+      {0x87aa9aff79042286, 0x90fb44d2f05d0843},
+      {0xa99541bf57452b28, 0x353a1607ac744a54},
+      {0xd3fa922f2d1675f2, 0x42889b8997915ce9},
+      {0x847c9b5d7c2e09b7, 0x69956135febada12},
+      {0xa59bc234db398c25, 0x43fab9837e699096},
+      {0xcf02b2c21207ef2e, 0x94f967e45e03f4bc},
+      {0x8161afb94b44f57d, 0x1d1be0eebac278f6},
+      {0xa1ba1ba79e1632dc, 0x6462d92a69731733},
+      {0xca28a291859bbf93, 0x7d7b8f7503cfdcff},
+      {0xfcb2cb35e702af78, 0x5cda735244c3d43f},
+      {0x9defbf01b061adab, 0x3a0888136afa64a8},
+      {0xc56baec21c7a1916, 0x088aaa1845b8fdd1},
+      {0xf6c69a72a3989f5b, 0x8aad549e57273d46},
+      {0x9a3c2087a63f6399, 0x36ac54e2f678864c},
+      {0xc0cb28a98fcf3c7f, 0x84576a1bb416a7de},
+      {0xf0fdf2d3f3c30b9f, 0x656d44a2a11c51d6},
+      {0x969eb7c47859e743, 0x9f644ae5a4b1b326},
+      {0xbc4665b596706114, 0x873d5d9f0dde1fef},
+      {0xeb57ff22fc0c7959, 0xa90cb506d155a7eb},
+      {0x9316ff75dd87cbd8, 0x09a7f12442d588f3},
+      {0xb7dcbf5354e9bece, 0x0c11ed6d538aeb30},
+      {0xe5d3ef282a242e81, 0x8f1668c8a86da5fb},
+      {0x8fa475791a569d10, 0xf96e017d694487bd},
+      {0xb38d92d760ec4455, 0x37c981dcc395a9ad},
+      {0xe070f78d3927556a, 0x85bbe253f47b1418},
+      {0x8c469ab843b89562, 0x93956d7478ccec8f},
+      {0xaf58416654a6babb, 0x387ac8d1970027b3},
+      {0xdb2e51bfe9d0696a, 0x06997b05fcc0319f},
+      {0x88fcf317f22241e2, 0x441fece3bdf81f04},
+      {0xab3c2fddeeaad25a, 0xd527e81cad7626c4},
+      {0xd60b3bd56a5586f1, 0x8a71e223d8d3b075},
+      {0x85c7056562757456, 0xf6872d5667844e4a},
+      {0xa738c6bebb12d16c, 0xb428f8ac016561dc},
+      {0xd106f86e69d785c7, 0xe13336d701beba53},
+      {0x82a45b450226b39c, 0xecc0024661173474},
+      {0xa34d721642b06084, 0x27f002d7f95d0191},
+      {0xcc20ce9bd35c78a5, 0x31ec038df7b441f5},
+      {0xff290242c83396ce, 0x7e67047175a15272},
+      {0x9f79a169bd203e41, 0x0f0062c6e984d387},
+      {0xc75809c42c684dd1, 0x52c07b78a3e60869},
+      {0xf92e0c3537826145, 0xa7709a56ccdf8a83},
+      {0x9bbcc7a142b17ccb, 0x88a66076400bb692},
+      {0xc2abf989935ddbfe, 0x6acff893d00ea436},
+      {0xf356f7ebf83552fe, 0x0583f6b8c4124d44},
+      {0x98165af37b2153de, 0xc3727a337a8b704b},
+      {0xbe1bf1b059e9a8d6, 0x744f18c0592e4c5d},
+      {0xeda2ee1c7064130c, 0x1162def06f79df74},
+      {0x9485d4d1c63e8be7, 0x8addcb5645ac2ba9},
+      {0xb9a74a0637ce2ee1, 0x6d953e2bd7173693},
+      {0xe8111c87c5c1ba99, 0xc8fa8db6ccdd0438},
+      {0x910ab1d4db9914a0, 0x1d9c9892400a22a3},
+      {0xb54d5e4a127f59c8, 0x2503beb6d00cab4c},
+      {0xe2a0b5dc971f303a, 0x2e44ae64840fd61e},
+      {0x8da471a9de737e24, 0x5ceaecfed289e5d3},
+      {0xb10d8e1456105dad, 0x7425a83e872c5f48},
+      {0xdd50f1996b947518, 0xd12f124e28f7771a},
+      {0x8a5296ffe33cc92f, 0x82bd6b70d99aaa70},
+      {0xace73cbfdc0bfb7b, 0x636cc64d1001550c},
+      {0xd8210befd30efa5a, 0x3c47f7e05401aa4f},
+      {0x8714a775e3e95c78, 0x65acfaec34810a72},
+      {0xa8d9d1535ce3b396, 0x7f1839a741a14d0e},
+      {0xd31045a8341ca07c, 0x1ede48111209a051},
+      {0x83ea2b892091e44d, 0x934aed0aab460433},
+      {0xa4e4b66b68b65d60, 0xf81da84d56178540},
+      {0xce1de40642e3f4b9, 0x36251260ab9d668f},
+      {0x80d2ae83e9ce78f3, 0xc1d72b7c6b42601a},
+      {0xa1075a24e4421730, 0xb24cf65b8612f820},
+      {0xc94930ae1d529cfc, 0xdee033f26797b628},
+      {0xfb9b7cd9a4a7443c, 0x169840ef017da3b2},
+      {0x9d412e0806e88aa5, 0x8e1f289560ee864f},
+      {0xc491798a08a2ad4e, 0xf1a6f2bab92a27e3},
+      {0xf5b5d7ec8acb58a2, 0xae10af696774b1dc},
+      {0x9991a6f3d6bf1765, 0xacca6da1e0a8ef2a},
+      {0xbff610b0cc6edd3f, 0x17fd090a58d32af4},
+      {0xeff394dcff8a948e, 0xddfc4b4cef07f5b1},
+      {0x95f83d0a1fb69cd9, 0x4abdaf101564f98f},
+      {0xbb764c4ca7a4440f, 0x9d6d1ad41abe37f2},
+      {0xea53df5fd18d5513, 0x84c86189216dc5ee},
+      {0x92746b9be2f8552c, 0x32fd3cf5b4e49bb5},
+      {0xb7118682dbb66a77, 0x3fbc8c33221dc2a2},
+      {0xe4d5e82392a40515, 0x0fabaf3feaa5334b},
+      {0x8f05b1163ba6832d, 0x29cb4d87f2a7400f},
+      {0xb2c71d5bca9023f8, 0x743e20e9ef511013},
+      {0xdf78e4b2bd342cf6, 0x914da9246b255417},
+      {0x8bab8eefb6409c1a, 0x1ad089b6c2f7548f},
+      {0xae9672aba3d0c320, 0xa184ac2473b529b2},
+      {0xda3c0f568cc4f3e8, 0xc9e5d72d90a2741f},
+      {0x8865899617fb1871, 0x7e2fa67c7a658893},
+      {0xaa7eebfb9df9de8d, 0xddbb901b98feeab8},
+      {0xd51ea6fa85785631, 0x552a74227f3ea566},
+      {0x8533285c936b35de, 0xd53a88958f872760},
+      {0xa67ff273b8460356, 0x8a892abaf368f138},
+      {0xd01fef10a657842c, 0x2d2b7569b0432d86},
+      {0x8213f56a67f6b29b, 0x9c3b29620e29fc74},
+      {0xa298f2c501f45f42, 0x8349f3ba91b47b90},
+      {0xcb3f2f7642717713, 0x241c70a936219a74},
+      {0xfe0efb53d30dd4d7, 0xed238cd383aa0111},
+      {0x9ec95d1463e8a506, 0xf4363804324a40ab},
+      {0xc67bb4597ce2ce48, 0xb143c6053edcd0d6},
+      {0xf81aa16fdc1b81da, 0xdd94b7868e94050b},
+      {0x9b10a4e5e9913128, 0xca7cf2b4191c8327},
+      {0xc1d4ce1f63f57d72, 0xfd1c2f611f63a3f1},
+      {0xf24a01a73cf2dccf, 0xbc633b39673c8ced},
+      {0x976e41088617ca01, 0xd5be0503e085d814},
+      {0xbd49d14aa79dbc82, 0x4b2d8644d8a74e19},
+      {0xec9c459d51852ba2, 0xddf8e7d60ed1219f},
+      {0x93e1ab8252f33b45, 0xcabb90e5c942b504},
+      {0xb8da1662e7b00a17, 0x3d6a751f3b936244},
+      {0xe7109bfba19c0c9d, 0x0cc512670a783ad5},
+      {0x906a617d450187e2, 0x27fb2b80668b24c6},
+      {0xb484f9dc9641e9da, 0xb1f9f660802dedf7},
+      {0xe1a63853bbd26451, 0x5e7873f8a0396974},
+      {0x8d07e33455637eb2, 0xdb0b487b6423e1e9},
+      {0xb049dc016abc5e5f, 0x91ce1a9a3d2cda63},
+      {0xdc5c5301c56b75f7, 0x7641a140cc7810fc},
+      {0x89b9b3e11b6329ba, 0xa9e904c87fcb0a9e},
+      {0xac2820d9623bf429, 0x546345fa9fbdcd45},
+      {0xd732290fbacaf133, 0xa97c177947ad4096},
+      {0x867f59a9d4bed6c0, 0x49ed8eabcccc485e},
+      {0xa81f301449ee8c70, 0x5c68f256bfff5a75},
+      {0xd226fc195c6a2f8c, 0x73832eec6fff3112},
+      {0x83585d8fd9c25db7, 0xc831fd53c5ff7eac},
+      {0xa42e74f3d032f525, 0xba3e7ca8b77f5e56},
+      {0xcd3a1230c43fb26f, 0x28ce1bd2e55f35ec},
+      {0x80444b5e7aa7cf85, 0x7980d163cf5b81b4},
+      {0xa0555e361951c366, 0xd7e105bcc3326220},
+      {0xc86ab5c39fa63440, 0x8dd9472bf3fefaa8},
+      {0xfa856334878fc150, 0xb14f98f6f0feb952},
+      {0x9c935e00d4b9d8d2, 0x6ed1bf9a569f33d4},
+      {0xc3b8358109e84f07, 0x0a862f80ec4700c9},
+      {0xf4a642e14c6262c8, 0xcd27bb612758c0fb},
+      {0x98e7e9cccfbd7dbd, 0x8038d51cb897789d},
+      {0xbf21e44003acdd2c, 0xe0470a63e6bd56c4},
+      {0xeeea5d5004981478, 0x1858ccfce06cac75},
+      {0x95527a5202df0ccb, 0x0f37801e0c43ebc9},
+      {0xbaa718e68396cffd, 0xd30560258f54e6bb},
+      {0xe950df20247c83fd, 0x47c6b82ef32a206a},
+      {0x91d28b7416cdd27e, 0x4cdc331d57fa5442},
+      {0xb6472e511c81471d, 0xe0133fe4adf8e953},
+      {0xe3d8f9e563a198e5, 0x58180fddd97723a7},
+      {0x8e679c2f5e44ff8f, 0x570f09eaa7ea7649},
+      {0xb201833b35d63f73, 0x2cd2cc6551e513db},
+      {0xde81e40a034bcf4f, 0xf8077f7ea65e58d2},
+      {0x8b112e86420f6191, 0xfb04afaf27faf783},
+      {0xadd57a27d29339f6, 0x79c5db9af1f9b564},
+      {0xd94ad8b1c7380874, 0x18375281ae7822bd},
+      {0x87cec76f1c830548, 0x8f2293910d0b15b6},
+      {0xa9c2794ae3a3c69a, 0xb2eb3875504ddb23},
+      {0xd433179d9c8cb841, 0x5fa60692a46151ec},
+      {0x849feec281d7f328, 0xdbc7c41ba6bcd334},
+      {0xa5c7ea73224deff3, 0x12b9b522906c0801},
+      {0xcf39e50feae16bef, 0xd768226b34870a01},
+      {0x81842f29f2cce375, 0xe6a1158300d46641},
+      {0xa1e53af46f801c53, 0x60495ae3c1097fd1},
+      {0xca5e89b18b602368, 0x385bb19cb14bdfc5},
+      {0xfcf62c1dee382c42, 0x46729e03dd9ed7b6},
+      {0x9e19db92b4e31ba9, 0x6c07a2c26a8346d2},
+      {0xc5a05277621be293, 0xc7098b7305241886},
+      {0xf70867153aa2db38, 0xb8cbee4fc66d1ea8},
+      {0x9a65406d44a5c903, 0x737f74f1dc043329},
+      {0xc0fe908895cf3b44, 0x505f522e53053ff3},
+      {0xf13e34aabb430a15, 0x647726b9e7c68ff0},
+      {0x96c6e0eab509e64d, 0x5eca783430dc19f6},
+      {0xbc789925624c5fe0, 0xb67d16413d132073},
+      {0xeb96bf6ebadf77d8, 0xe41c5bd18c57e890},
+      {0x933e37a534cbaae7, 0x8e91b962f7b6f15a},
+      {0xb80dc58e81fe95a1, 0x723627bbb5a4adb1},
+      {0xe61136f2227e3b09, 0xcec3b1aaa30dd91d},
+      {0x8fcac257558ee4e6, 0x213a4f0aa5e8a7b2},
+      {0xb3bd72ed2af29e1f, 0xa988e2cd4f62d19e},
+      {0xe0accfa875af45a7, 0x93eb1b80a33b8606},
+      {0x8c6c01c9498d8b88, 0xbc72f130660533c4},
+      {0xaf87023b9bf0ee6a, 0xeb8fad7c7f8680b5},
+      {0xdb68c2ca82ed2a05, 0xa67398db9f6820e2},
+#else
+      {0xff77b1fcbebcdc4f, 0x25e8e89c13bb0f7b},
+      {0xce5d73ff402d98e3, 0xfb0a3d212dc81290},
+      {0xa6b34ad8c9dfc06f, 0xf42faa48c0ea481f},
+      {0x86a8d39ef77164bc, 0xae5dff9c02033198},
+      {0xd98ddaee19068c76, 0x3badd624dd9b0958},
+      {0xafbd2350644eeacf, 0xe5d1929ef90898fb},
+      {0x8df5efabc5979c8f, 0xca8d3ffa1ef463c2},
+      {0xe55990879ddcaabd, 0xcc420a6a101d0516},
+      {0xb94470938fa89bce, 0xf808e40e8d5b3e6a},
+      {0x95a8637627989aad, 0xdde7001379a44aa9},
+      {0xf1c90080baf72cb1, 0x5324c68b12dd6339},
+      {0xc350000000000000, 0x0000000000000000},
+      {0x9dc5ada82b70b59d, 0xf020000000000000},
+      {0xfee50b7025c36a08, 0x02f236d04753d5b5},
+      {0xcde6fd5e09abcf26, 0xed4c0226b55e6f87},
+      {0xa6539930bf6bff45, 0x84db8346b786151d},
+      {0x865b86925b9bc5c2, 0x0b8a2392ba45a9b3},
+      {0xd910f7ff28069da4, 0x1b2ba1518094da05},
+      {0xaf58416654a6babb, 0x387ac8d1970027b3},
+      {0x8da471a9de737e24, 0x5ceaecfed289e5d3},
+      {0xe4d5e82392a40515, 0x0fabaf3feaa5334b},
+      {0xb8da1662e7b00a17, 0x3d6a751f3b936244},
+      {0x95527a5202df0ccb, 0x0f37801e0c43ebc9},
+      {0xf13e34aabb430a15, 0x647726b9e7c68ff0}
+#endif
+    };
+
+#if FMT_USE_FULL_CACHE_DRAGONBOX
+    return pow10_significands[k - float_info<double>::min_k];
+#else
+    static constexpr const uint64_t powers_of_5_64[] = {
+        0x0000000000000001, 0x0000000000000005, 0x0000000000000019,
+        0x000000000000007d, 0x0000000000000271, 0x0000000000000c35,
+        0x0000000000003d09, 0x000000000001312d, 0x000000000005f5e1,
+        0x00000000001dcd65, 0x00000000009502f9, 0x0000000002e90edd,
+        0x000000000e8d4a51, 0x0000000048c27395, 0x000000016bcc41e9,
+        0x000000071afd498d, 0x0000002386f26fc1, 0x000000b1a2bc2ec5,
+        0x000003782dace9d9, 0x00001158e460913d, 0x000056bc75e2d631,
+        0x0001b1ae4d6e2ef5, 0x000878678326eac9, 0x002a5a058fc295ed,
+        0x00d3c21bcecceda1, 0x0422ca8b0a00a425, 0x14adf4b7320334b9};
+
+    static const int compression_ratio = 27;
+
+    // Compute base index.
+    int cache_index = (k - float_info<double>::min_k) / compression_ratio;
+    int kb = cache_index * compression_ratio + float_info<double>::min_k;
+    int offset = k - kb;
+
+    // Get base cache.
+    uint128_fallback base_cache = pow10_significands[cache_index];
+    if (offset == 0) return base_cache;
+
+    // Compute the required amount of bit-shift.
+    int alpha = floor_log2_pow10(kb + offset) - floor_log2_pow10(kb) - offset;
+    FMT_ASSERT(alpha > 0 && alpha < 64, "shifting error detected");
+
+    // Try to recover the real cache.
+    uint64_t pow5 = powers_of_5_64[offset];
+    uint128_fallback recovered_cache = umul128(base_cache.high(), pow5);
+    uint128_fallback middle_low = umul128(base_cache.low(), pow5);
+
+    recovered_cache += middle_low.high();
+
+    uint64_t high_to_middle = recovered_cache.high() << (64 - alpha);
+    uint64_t middle_to_low = recovered_cache.low() << (64 - alpha);
+
+    recovered_cache =
+        uint128_fallback{(recovered_cache.low() >> alpha) | high_to_middle,
+                         ((middle_low.low() >> alpha) | middle_to_low)};
+    FMT_ASSERT(recovered_cache.low() + 1 != 0, "");
+    return {recovered_cache.high(), recovered_cache.low() + 1};
+#endif
+  }
+
+  struct compute_mul_result {
+    carrier_uint result;
+    bool is_integer;
+  };
+  struct compute_mul_parity_result {
+    bool parity;
+    bool is_integer;
+  };
+
+  static auto compute_mul(carrier_uint u,
+                          const cache_entry_type& cache) noexcept
+      -> compute_mul_result {
+    auto r = umul192_upper128(u, cache);
+    return {r.high(), r.low() == 0};
+  }
+
+  static auto compute_delta(cache_entry_type const& cache, int beta) noexcept
+      -> uint32_t {
+    return static_cast<uint32_t>(cache.high() >> (64 - 1 - beta));
+  }
+
+  static auto compute_mul_parity(carrier_uint two_f,
+                                 const cache_entry_type& cache,
+                                 int beta) noexcept
+      -> compute_mul_parity_result {
+    FMT_ASSERT(beta >= 1, "");
+    FMT_ASSERT(beta < 64, "");
+
+    auto r = umul192_lower128(two_f, cache);
+    return {((r.high() >> (64 - beta)) & 1) != 0,
+            ((r.high() << beta) | (r.low() >> (64 - beta))) == 0};
+  }
+
+  static auto compute_left_endpoint_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return (cache.high() -
+            (cache.high() >> (num_significand_bits<double>() + 2))) >>
+           (64 - num_significand_bits<double>() - 1 - beta);
+  }
+
+  static auto compute_right_endpoint_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return (cache.high() +
+            (cache.high() >> (num_significand_bits<double>() + 1))) >>
+           (64 - num_significand_bits<double>() - 1 - beta);
+  }
+
+  static auto compute_round_up_for_shorter_interval_case(
+      const cache_entry_type& cache, int beta) noexcept -> carrier_uint {
+    return ((cache.high() >> (64 - num_significand_bits<double>() - 2 - beta)) +
+            1) /
+           2;
+  }
+};
+
+FMT_FUNC auto get_cached_power(int k) noexcept -> uint128_fallback {
+  return cache_accessor<double>::get_cached_power(k);
+}
+
+// Various integer checks
+template <typename T>
+auto is_left_endpoint_integer_shorter_interval(int exponent) noexcept -> bool {
+  const int case_shorter_interval_left_endpoint_lower_threshold = 2;
+  const int case_shorter_interval_left_endpoint_upper_threshold = 3;
+  return exponent >= case_shorter_interval_left_endpoint_lower_threshold &&
+         exponent <= case_shorter_interval_left_endpoint_upper_threshold;
+}
+
+// Remove trailing zeros from n and return the number of zeros removed (float)
+FMT_INLINE int remove_trailing_zeros(uint32_t& n, int s = 0) noexcept {
+  FMT_ASSERT(n != 0, "");
+  // Modular inverse of 5 (mod 2^32): (mod_inv_5 * 5) mod 2^32 = 1.
+  constexpr uint32_t mod_inv_5 = 0xcccccccd;
+  constexpr uint32_t mod_inv_25 = 0xc28f5c29;  // = mod_inv_5 * mod_inv_5
+
+  while (true) {
+    auto q = rotr(n * mod_inv_25, 2);
+    if (q > max_value<uint32_t>() / 100) break;
+    n = q;
+    s += 2;
+  }
+  auto q = rotr(n * mod_inv_5, 1);
+  if (q <= max_value<uint32_t>() / 10) {
+    n = q;
+    s |= 1;
+  }
+  return s;
+}
+
+// Removes trailing zeros and returns the number of zeros removed (double)
+FMT_INLINE int remove_trailing_zeros(uint64_t& n) noexcept {
+  FMT_ASSERT(n != 0, "");
+
+  // This magic number is ceil(2^90 / 10^8).
+  constexpr uint64_t magic_number = 12379400392853802749ull;
+  auto nm = umul128(n, magic_number);
+
+  // Is n is divisible by 10^8?
+  if ((nm.high() & ((1ull << (90 - 64)) - 1)) == 0 && nm.low() < magic_number) {
+    // If yes, work with the quotient...
+    auto n32 = static_cast<uint32_t>(nm.high() >> (90 - 64));
+    // ... and use the 32 bit variant of the function
+    int s = remove_trailing_zeros(n32, 8);
+    n = n32;
+    return s;
+  }
+
+  // If n is not divisible by 10^8, work with n itself.
+  constexpr uint64_t mod_inv_5 = 0xcccccccccccccccd;
+  constexpr uint64_t mod_inv_25 = 0x8f5c28f5c28f5c29;  // mod_inv_5 * mod_inv_5
+
+  int s = 0;
+  while (true) {
+    auto q = rotr(n * mod_inv_25, 2);
+    if (q > max_value<uint64_t>() / 100) break;
+    n = q;
+    s += 2;
+  }
+  auto q = rotr(n * mod_inv_5, 1);
+  if (q <= max_value<uint64_t>() / 10) {
+    n = q;
+    s |= 1;
+  }
+
+  return s;
+}
+
+// The main algorithm for shorter interval case
+template <typename T>
+FMT_INLINE decimal_fp<T> shorter_interval_case(int exponent) noexcept {
+  decimal_fp<T> ret_value;
+  // Compute k and beta
+  const int minus_k = floor_log10_pow2_minus_log10_4_over_3(exponent);
+  const int beta = exponent + floor_log2_pow10(-minus_k);
+
+  // Compute xi and zi
+  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
+  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
+
+  auto xi = cache_accessor<T>::compute_left_endpoint_for_shorter_interval_case(
+      cache, beta);
+  auto zi = cache_accessor<T>::compute_right_endpoint_for_shorter_interval_case(
+      cache, beta);
+
+  // If the left endpoint is not an integer, increase it
+  if (!is_left_endpoint_integer_shorter_interval<T>(exponent)) ++xi;
+
+  // Try bigger divisor
+  ret_value.significand = zi / 10;
+
+  // If succeed, remove trailing zeros if necessary and return
+  if (ret_value.significand * 10 >= xi) {
+    ret_value.exponent = minus_k + 1;
+    ret_value.exponent += remove_trailing_zeros(ret_value.significand);
+    return ret_value;
+  }
+
+  // Otherwise, compute the round-up of y
+  ret_value.significand =
+      cache_accessor<T>::compute_round_up_for_shorter_interval_case(cache,
+                                                                    beta);
+  ret_value.exponent = minus_k;
+
+  // When tie occurs, choose one of them according to the rule
+  if (exponent >= float_info<T>::shorter_interval_tie_lower_threshold &&
+      exponent <= float_info<T>::shorter_interval_tie_upper_threshold) {
+    ret_value.significand = ret_value.significand % 2 == 0
+                                ? ret_value.significand
+                                : ret_value.significand - 1;
+  } else if (ret_value.significand < xi) {
+    ++ret_value.significand;
+  }
+  return ret_value;
+}
+
+template <typename T> auto to_decimal(T x) noexcept -> decimal_fp<T> {
+  // Step 1: integer promotion & Schubfach multiplier calculation.
+
+  using carrier_uint = typename float_info<T>::carrier_uint;
+  using cache_entry_type = typename cache_accessor<T>::cache_entry_type;
+  auto br = bit_cast<carrier_uint>(x);
+
+  // Extract significand bits and exponent bits.
+  const carrier_uint significand_mask =
+      (static_cast<carrier_uint>(1) << num_significand_bits<T>()) - 1;
+  carrier_uint significand = (br & significand_mask);
+  int exponent =
+      static_cast<int>((br & exponent_mask<T>()) >> num_significand_bits<T>());
+
+  if (exponent != 0) {  // Check if normal.
+    exponent -= exponent_bias<T>() + num_significand_bits<T>();
+
+    // Shorter interval case; proceed like Schubfach.
+    // In fact, when exponent == 1 and significand == 0, the interval is
+    // regular. However, it can be shown that the end-results are anyway same.
+    if (significand == 0) return shorter_interval_case<T>(exponent);
+
+    significand |= (static_cast<carrier_uint>(1) << num_significand_bits<T>());
+  } else {
+    // Subnormal case; the interval is always regular.
+    if (significand == 0) return {0, 0};
+    exponent =
+        std::numeric_limits<T>::min_exponent - num_significand_bits<T>() - 1;
+  }
+
+  const bool include_left_endpoint = (significand % 2 == 0);
+  const bool include_right_endpoint = include_left_endpoint;
+
+  // Compute k and beta.
+  const int minus_k = floor_log10_pow2(exponent) - float_info<T>::kappa;
+  const cache_entry_type cache = cache_accessor<T>::get_cached_power(-minus_k);
+  const int beta = exponent + floor_log2_pow10(-minus_k);
+
+  // Compute zi and deltai.
+  // 10^kappa <= deltai < 10^(kappa + 1)
+  const uint32_t deltai = cache_accessor<T>::compute_delta(cache, beta);
+  const carrier_uint two_fc = significand << 1;
+
+  // For the case of binary32, the result of integer check is not correct for
+  // 29711844 * 2^-82
+  // = 6.1442653300000000008655037797566933477355632930994033813476... * 10^-18
+  // and 29711844 * 2^-81
+  // = 1.2288530660000000001731007559513386695471126586198806762695... * 10^-17,
+  // and they are the unique counterexamples. However, since 29711844 is even,
+  // this does not cause any problem for the endpoints calculations; it can only
+  // cause a problem when we need to perform integer check for the center.
+  // Fortunately, with these inputs, that branch is never executed, so we are
+  // fine.
+  const typename cache_accessor<T>::compute_mul_result z_mul =
+      cache_accessor<T>::compute_mul((two_fc | 1) << beta, cache);
+
+  // Step 2: Try larger divisor; remove trailing zeros if necessary.
+
+  // Using an upper bound on zi, we might be able to optimize the division
+  // better than the compiler; we are computing zi / big_divisor here.
+  decimal_fp<T> ret_value;
+  ret_value.significand = divide_by_10_to_kappa_plus_1(z_mul.result);
+  uint32_t r = static_cast<uint32_t>(z_mul.result - float_info<T>::big_divisor *
+                                                        ret_value.significand);
+
+  if (r < deltai) {
+    // Exclude the right endpoint if necessary.
+    if (r == 0 && (z_mul.is_integer & !include_right_endpoint)) {
+      --ret_value.significand;
+      r = float_info<T>::big_divisor;
+      goto small_divisor_case_label;
+    }
+  } else if (r > deltai) {
+    goto small_divisor_case_label;
+  } else {
+    // r == deltai; compare fractional parts.
+    const typename cache_accessor<T>::compute_mul_parity_result x_mul =
+        cache_accessor<T>::compute_mul_parity(two_fc - 1, cache, beta);
+
+    if (!(x_mul.parity | (x_mul.is_integer & include_left_endpoint)))
+      goto small_divisor_case_label;
+  }
+  ret_value.exponent = minus_k + float_info<T>::kappa + 1;
+
+  // We may need to remove trailing zeros.
+  ret_value.exponent += remove_trailing_zeros(ret_value.significand);
+  return ret_value;
+
+  // Step 3: Find the significand with the smaller divisor.
+
+small_divisor_case_label:
+  ret_value.significand *= 10;
+  ret_value.exponent = minus_k + float_info<T>::kappa;
+
+  uint32_t dist = r - (deltai / 2) + (float_info<T>::small_divisor / 2);
+  const bool approx_y_parity =
+      ((dist ^ (float_info<T>::small_divisor / 2)) & 1) != 0;
+
+  // Is dist divisible by 10^kappa?
+  const bool divisible_by_small_divisor =
+      check_divisibility_and_divide_by_pow10<float_info<T>::kappa>(dist);
+
+  // Add dist / 10^kappa to the significand.
+  ret_value.significand += dist;
+
+  if (!divisible_by_small_divisor) return ret_value;
+
+  // Check z^(f) >= epsilon^(f).
+  // We have either yi == zi - epsiloni or yi == (zi - epsiloni) - 1,
+  // where yi == zi - epsiloni if and only if z^(f) >= epsilon^(f).
+  // Since there are only 2 possibilities, we only need to care about the
+  // parity. Also, zi and r should have the same parity since the divisor
+  // is an even number.
+  const auto y_mul = cache_accessor<T>::compute_mul_parity(two_fc, cache, beta);
+
+  // If z^(f) >= epsilon^(f), we might have a tie when z^(f) == epsilon^(f),
+  // or equivalently, when y is an integer.
+  if (y_mul.parity != approx_y_parity)
+    --ret_value.significand;
+  else if (y_mul.is_integer & (ret_value.significand % 2 != 0))
+    --ret_value.significand;
+  return ret_value;
+}
+}  // namespace dragonbox
+}  // namespace detail
+
+template <> struct formatter<detail::bigint> {
+  FMT_CONSTEXPR auto parse(format_parse_context& ctx)
+      -> format_parse_context::iterator {
+    return ctx.begin();
+  }
+
+  auto format(const detail::bigint& n, format_context& ctx) const
+      -> format_context::iterator {
+    auto out = ctx.out();
+    bool first = true;
+    for (auto i = n.bigits_.size(); i > 0; --i) {
+      auto value = n.bigits_[i - 1u];
+      if (first) {
+        out = fmt::format_to(out, FMT_STRING("{:x}"), value);
+        first = false;
+        continue;
+      }
+      out = fmt::format_to(out, FMT_STRING("{:08x}"), value);
+    }
+    if (n.exp_ > 0)
+      out = fmt::format_to(out, FMT_STRING("p{}"),
+                           n.exp_ * detail::bigint::bigit_bits);
+    return out;
+  }
+};
+
+FMT_FUNC detail::utf8_to_utf16::utf8_to_utf16(string_view s) {
+  for_each_codepoint(s, [this](uint32_t cp, string_view) {
+    if (cp == invalid_code_point) FMT_THROW(std::runtime_error("invalid utf8"));
+    if (cp <= 0xFFFF) {
+      buffer_.push_back(static_cast<wchar_t>(cp));
+    } else {
+      cp -= 0x10000;
+      buffer_.push_back(static_cast<wchar_t>(0xD800 + (cp >> 10)));
+      buffer_.push_back(static_cast<wchar_t>(0xDC00 + (cp & 0x3FF)));
+    }
+    return true;
+  });
+  buffer_.push_back(0);
+}
+
+FMT_FUNC void format_system_error(detail::buffer<char>& out, int error_code,
+                                  const char* message) noexcept {
+  FMT_TRY {
+    auto ec = std::error_code(error_code, std::generic_category());
+    write(std::back_inserter(out), std::system_error(ec, message).what());
+    return;
+  }
+  FMT_CATCH(...) {}
+  format_error_code(out, error_code, message);
+}
+
+FMT_FUNC void report_system_error(int error_code,
+                                  const char* message) noexcept {
+  report_error(format_system_error, error_code, message);
+}
+
+FMT_FUNC auto vformat(string_view fmt, format_args args) -> std::string {
+  // Don't optimize the "{}" case to keep the binary size small and because it
+  // can be better optimized in fmt::format anyway.
+  auto buffer = memory_buffer();
+  detail::vformat_to(buffer, fmt, args);
+  return to_string(buffer);
+}
+
+namespace detail {
+#if !defined(_WIN32) || defined(FMT_WINDOWS_NO_WCHAR)
+FMT_FUNC auto write_console(int, string_view) -> bool { return false; }
+FMT_FUNC auto write_console(std::FILE*, string_view) -> bool { return false; }
+#else
+using dword = conditional_t<sizeof(long) == 4, unsigned long, unsigned>;
+extern "C" __declspec(dllimport) int __stdcall WriteConsoleW(  //
+    void*, const void*, dword, dword*, void*);
+
+FMT_FUNC bool write_console(int fd, string_view text) {
+  auto u16 = utf8_to_utf16(text);
+  return WriteConsoleW(reinterpret_cast<void*>(_get_osfhandle(fd)), u16.c_str(),
+                       static_cast<dword>(u16.size()), nullptr, nullptr) != 0;
+}
+
+FMT_FUNC auto write_console(std::FILE* f, string_view text) -> bool {
+  return write_console(_fileno(f), text);
+}
+#endif
+
+#ifdef _WIN32
+// Print assuming legacy (non-Unicode) encoding.
+FMT_FUNC void vprint_mojibake(std::FILE* f, string_view fmt, format_args args) {
+  auto buffer = memory_buffer();
+  detail::vformat_to(buffer, fmt, args);
+  fwrite_fully(buffer.data(), buffer.size(), f);
+}
+#endif
+
+FMT_FUNC void print(std::FILE* f, string_view text) {
+#ifdef _WIN32
+  int fd = _fileno(f);
+  if (_isatty(fd)) {
+    std::fflush(f);
+    if (write_console(fd, text)) return;
+  }
+#endif
+  fwrite_fully(text.data(), text.size(), f);
+}
+}  // namespace detail
+
+FMT_FUNC void vprint(std::FILE* f, string_view fmt, format_args args) {
+  auto buffer = memory_buffer();
+  detail::vformat_to(buffer, fmt, args);
+  detail::print(f, {buffer.data(), buffer.size()});
+}
+
+FMT_FUNC void vprint(string_view fmt, format_args args) {
+  vprint(stdout, fmt, args);
+}
+
+namespace detail {
+
+struct singleton {
+  unsigned char upper;
+  unsigned char lower_count;
+};
+
+inline auto is_printable(uint16_t x, const singleton* singletons,
+                         size_t singletons_size,
+                         const unsigned char* singleton_lowers,
+                         const unsigned char* normal, size_t normal_size)
+    -> bool {
+  auto upper = x >> 8;
+  auto lower_start = 0;
+  for (size_t i = 0; i < singletons_size; ++i) {
+    auto s = singletons[i];
+    auto lower_end = lower_start + s.lower_count;
+    if (upper < s.upper) break;
+    if (upper == s.upper) {
+      for (auto j = lower_start; j < lower_end; ++j) {
+        if (singleton_lowers[j] == (x & 0xff)) return false;
+      }
+    }
+    lower_start = lower_end;
+  }
+
+  auto xsigned = static_cast<int>(x);
+  auto current = true;
+  for (size_t i = 0; i < normal_size; ++i) {
+    auto v = static_cast<int>(normal[i]);
+    auto len = (v & 0x80) != 0 ? (v & 0x7f) << 8 | normal[++i] : v;
+    xsigned -= len;
+    if (xsigned < 0) break;
+    current = !current;
+  }
+  return current;
+}
+
+// This code is generated by support/printable.py.
+FMT_FUNC auto is_printable(uint32_t cp) -> bool {
+  static constexpr singleton singletons0[] = {
+      {0x00, 1},  {0x03, 5},  {0x05, 6},  {0x06, 3},  {0x07, 6},  {0x08, 8},
+      {0x09, 17}, {0x0a, 28}, {0x0b, 25}, {0x0c, 20}, {0x0d, 16}, {0x0e, 13},
+      {0x0f, 4},  {0x10, 3},  {0x12, 18}, {0x13, 9},  {0x16, 1},  {0x17, 5},
+      {0x18, 2},  {0x19, 3},  {0x1a, 7},  {0x1c, 2},  {0x1d, 1},  {0x1f, 22},
+      {0x20, 3},  {0x2b, 3},  {0x2c, 2},  {0x2d, 11}, {0x2e, 1},  {0x30, 3},
+      {0x31, 2},  {0x32, 1},  {0xa7, 2},  {0xa9, 2},  {0xaa, 4},  {0xab, 8},
+      {0xfa, 2},  {0xfb, 5},  {0xfd, 4},  {0xfe, 3},  {0xff, 9},
+  };
+  static constexpr unsigned char singletons0_lower[] = {
+      0xad, 0x78, 0x79, 0x8b, 0x8d, 0xa2, 0x30, 0x57, 0x58, 0x8b, 0x8c, 0x90,
+      0x1c, 0x1d, 0xdd, 0x0e, 0x0f, 0x4b, 0x4c, 0xfb, 0xfc, 0x2e, 0x2f, 0x3f,
+      0x5c, 0x5d, 0x5f, 0xb5, 0xe2, 0x84, 0x8d, 0x8e, 0x91, 0x92, 0xa9, 0xb1,
+      0xba, 0xbb, 0xc5, 0xc6, 0xc9, 0xca, 0xde, 0xe4, 0xe5, 0xff, 0x00, 0x04,
+      0x11, 0x12, 0x29, 0x31, 0x34, 0x37, 0x3a, 0x3b, 0x3d, 0x49, 0x4a, 0x5d,
+      0x84, 0x8e, 0x92, 0xa9, 0xb1, 0xb4, 0xba, 0xbb, 0xc6, 0xca, 0xce, 0xcf,
+      0xe4, 0xe5, 0x00, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a,
+      0x3b, 0x45, 0x46, 0x49, 0x4a, 0x5e, 0x64, 0x65, 0x84, 0x91, 0x9b, 0x9d,
+      0xc9, 0xce, 0xcf, 0x0d, 0x11, 0x29, 0x45, 0x49, 0x57, 0x64, 0x65, 0x8d,
+      0x91, 0xa9, 0xb4, 0xba, 0xbb, 0xc5, 0xc9, 0xdf, 0xe4, 0xe5, 0xf0, 0x0d,
+      0x11, 0x45, 0x49, 0x64, 0x65, 0x80, 0x84, 0xb2, 0xbc, 0xbe, 0xbf, 0xd5,
+      0xd7, 0xf0, 0xf1, 0x83, 0x85, 0x8b, 0xa4, 0xa6, 0xbe, 0xbf, 0xc5, 0xc7,
+      0xce, 0xcf, 0xda, 0xdb, 0x48, 0x98, 0xbd, 0xcd, 0xc6, 0xce, 0xcf, 0x49,
+      0x4e, 0x4f, 0x57, 0x59, 0x5e, 0x5f, 0x89, 0x8e, 0x8f, 0xb1, 0xb6, 0xb7,
+      0xbf, 0xc1, 0xc6, 0xc7, 0xd7, 0x11, 0x16, 0x17, 0x5b, 0x5c, 0xf6, 0xf7,
+      0xfe, 0xff, 0x80, 0x0d, 0x6d, 0x71, 0xde, 0xdf, 0x0e, 0x0f, 0x1f, 0x6e,
+      0x6f, 0x1c, 0x1d, 0x5f, 0x7d, 0x7e, 0xae, 0xaf, 0xbb, 0xbc, 0xfa, 0x16,
+      0x17, 0x1e, 0x1f, 0x46, 0x47, 0x4e, 0x4f, 0x58, 0x5a, 0x5c, 0x5e, 0x7e,
+      0x7f, 0xb5, 0xc5, 0xd4, 0xd5, 0xdc, 0xf0, 0xf1, 0xf5, 0x72, 0x73, 0x8f,
+      0x74, 0x75, 0x96, 0x2f, 0x5f, 0x26, 0x2e, 0x2f, 0xa7, 0xaf, 0xb7, 0xbf,
+      0xc7, 0xcf, 0xd7, 0xdf, 0x9a, 0x40, 0x97, 0x98, 0x30, 0x8f, 0x1f, 0xc0,
+      0xc1, 0xce, 0xff, 0x4e, 0x4f, 0x5a, 0x5b, 0x07, 0x08, 0x0f, 0x10, 0x27,
+      0x2f, 0xee, 0xef, 0x6e, 0x6f, 0x37, 0x3d, 0x3f, 0x42, 0x45, 0x90, 0x91,
+      0xfe, 0xff, 0x53, 0x67, 0x75, 0xc8, 0xc9, 0xd0, 0xd1, 0xd8, 0xd9, 0xe7,
+      0xfe, 0xff,
+  };
+  static constexpr singleton singletons1[] = {
+      {0x00, 6},  {0x01, 1}, {0x03, 1},  {0x04, 2}, {0x08, 8},  {0x09, 2},
+      {0x0a, 5},  {0x0b, 2}, {0x0e, 4},  {0x10, 1}, {0x11, 2},  {0x12, 5},
+      {0x13, 17}, {0x14, 1}, {0x15, 2},  {0x17, 2}, {0x19, 13}, {0x1c, 5},
+      {0x1d, 8},  {0x24, 1}, {0x6a, 3},  {0x6b, 2}, {0xbc, 2},  {0xd1, 2},
+      {0xd4, 12}, {0xd5, 9}, {0xd6, 2},  {0xd7, 2}, {0xda, 1},  {0xe0, 5},
+      {0xe1, 2},  {0xe8, 2}, {0xee, 32}, {0xf0, 4}, {0xf8, 2},  {0xf9, 2},
+      {0xfa, 2},  {0xfb, 1},
+  };
+  static constexpr unsigned char singletons1_lower[] = {
+      0x0c, 0x27, 0x3b, 0x3e, 0x4e, 0x4f, 0x8f, 0x9e, 0x9e, 0x9f, 0x06, 0x07,
+      0x09, 0x36, 0x3d, 0x3e, 0x56, 0xf3, 0xd0, 0xd1, 0x04, 0x14, 0x18, 0x36,
+      0x37, 0x56, 0x57, 0x7f, 0xaa, 0xae, 0xaf, 0xbd, 0x35, 0xe0, 0x12, 0x87,
+      0x89, 0x8e, 0x9e, 0x04, 0x0d, 0x0e, 0x11, 0x12, 0x29, 0x31, 0x34, 0x3a,
+      0x45, 0x46, 0x49, 0x4a, 0x4e, 0x4f, 0x64, 0x65, 0x5c, 0xb6, 0xb7, 0x1b,
+      0x1c, 0x07, 0x08, 0x0a, 0x0b, 0x14, 0x17, 0x36, 0x39, 0x3a, 0xa8, 0xa9,
+      0xd8, 0xd9, 0x09, 0x37, 0x90, 0x91, 0xa8, 0x07, 0x0a, 0x3b, 0x3e, 0x66,
+      0x69, 0x8f, 0x92, 0x6f, 0x5f, 0xee, 0xef, 0x5a, 0x62, 0x9a, 0x9b, 0x27,
+      0x28, 0x55, 0x9d, 0xa0, 0xa1, 0xa3, 0xa4, 0xa7, 0xa8, 0xad, 0xba, 0xbc,
+      0xc4, 0x06, 0x0b, 0x0c, 0x15, 0x1d, 0x3a, 0x3f, 0x45, 0x51, 0xa6, 0xa7,
+      0xcc, 0xcd, 0xa0, 0x07, 0x19, 0x1a, 0x22, 0x25, 0x3e, 0x3f, 0xc5, 0xc6,
+      0x04, 0x20, 0x23, 0x25, 0x26, 0x28, 0x33, 0x38, 0x3a, 0x48, 0x4a, 0x4c,
+      0x50, 0x53, 0x55, 0x56, 0x58, 0x5a, 0x5c, 0x5e, 0x60, 0x63, 0x65, 0x66,
+      0x6b, 0x73, 0x78, 0x7d, 0x7f, 0x8a, 0xa4, 0xaa, 0xaf, 0xb0, 0xc0, 0xd0,
+      0xae, 0xaf, 0x79, 0xcc, 0x6e, 0x6f, 0x93,
+  };
+  static constexpr unsigned char normal0[] = {
+      0x00, 0x20, 0x5f, 0x22, 0x82, 0xdf, 0x04, 0x82, 0x44, 0x08, 0x1b, 0x04,
+      0x06, 0x11, 0x81, 0xac, 0x0e, 0x80, 0xab, 0x35, 0x28, 0x0b, 0x80, 0xe0,
+      0x03, 0x19, 0x08, 0x01, 0x04, 0x2f, 0x04, 0x34, 0x04, 0x07, 0x03, 0x01,
+      0x07, 0x06, 0x07, 0x11, 0x0a, 0x50, 0x0f, 0x12, 0x07, 0x55, 0x07, 0x03,
+      0x04, 0x1c, 0x0a, 0x09, 0x03, 0x08, 0x03, 0x07, 0x03, 0x02, 0x03, 0x03,
+      0x03, 0x0c, 0x04, 0x05, 0x03, 0x0b, 0x06, 0x01, 0x0e, 0x15, 0x05, 0x3a,
+      0x03, 0x11, 0x07, 0x06, 0x05, 0x10, 0x07, 0x57, 0x07, 0x02, 0x07, 0x15,
+      0x0d, 0x50, 0x04, 0x43, 0x03, 0x2d, 0x03, 0x01, 0x04, 0x11, 0x06, 0x0f,
+      0x0c, 0x3a, 0x04, 0x1d, 0x25, 0x5f, 0x20, 0x6d, 0x04, 0x6a, 0x25, 0x80,
+      0xc8, 0x05, 0x82, 0xb0, 0x03, 0x1a, 0x06, 0x82, 0xfd, 0x03, 0x59, 0x07,
+      0x15, 0x0b, 0x17, 0x09, 0x14, 0x0c, 0x14, 0x0c, 0x6a, 0x06, 0x0a, 0x06,
+      0x1a, 0x06, 0x59, 0x07, 0x2b, 0x05, 0x46, 0x0a, 0x2c, 0x04, 0x0c, 0x04,
+      0x01, 0x03, 0x31, 0x0b, 0x2c, 0x04, 0x1a, 0x06, 0x0b, 0x03, 0x80, 0xac,
+      0x06, 0x0a, 0x06, 0x21, 0x3f, 0x4c, 0x04, 0x2d, 0x03, 0x74, 0x08, 0x3c,
+      0x03, 0x0f, 0x03, 0x3c, 0x07, 0x38, 0x08, 0x2b, 0x05, 0x82, 0xff, 0x11,
+      0x18, 0x08, 0x2f, 0x11, 0x2d, 0x03, 0x20, 0x10, 0x21, 0x0f, 0x80, 0x8c,
+      0x04, 0x82, 0x97, 0x19, 0x0b, 0x15, 0x88, 0x94, 0x05, 0x2f, 0x05, 0x3b,
+      0x07, 0x02, 0x0e, 0x18, 0x09, 0x80, 0xb3, 0x2d, 0x74, 0x0c, 0x80, 0xd6,
+      0x1a, 0x0c, 0x05, 0x80, 0xff, 0x05, 0x80, 0xdf, 0x0c, 0xee, 0x0d, 0x03,
+      0x84, 0x8d, 0x03, 0x37, 0x09, 0x81, 0x5c, 0x14, 0x80, 0xb8, 0x08, 0x80,
+      0xcb, 0x2a, 0x38, 0x03, 0x0a, 0x06, 0x38, 0x08, 0x46, 0x08, 0x0c, 0x06,
+      0x74, 0x0b, 0x1e, 0x03, 0x5a, 0x04, 0x59, 0x09, 0x80, 0x83, 0x18, 0x1c,
+      0x0a, 0x16, 0x09, 0x4c, 0x04, 0x80, 0x8a, 0x06, 0xab, 0xa4, 0x0c, 0x17,
+      0x04, 0x31, 0xa1, 0x04, 0x81, 0xda, 0x26, 0x07, 0x0c, 0x05, 0x05, 0x80,
+      0xa5, 0x11, 0x81, 0x6d, 0x10, 0x78, 0x28, 0x2a, 0x06, 0x4c, 0x04, 0x80,
+      0x8d, 0x04, 0x80, 0xbe, 0x03, 0x1b, 0x03, 0x0f, 0x0d,
+  };
+  static constexpr unsigned char normal1[] = {
+      0x5e, 0x22, 0x7b, 0x05, 0x03, 0x04, 0x2d, 0x03, 0x66, 0x03, 0x01, 0x2f,
+      0x2e, 0x80, 0x82, 0x1d, 0x03, 0x31, 0x0f, 0x1c, 0x04, 0x24, 0x09, 0x1e,
+      0x05, 0x2b, 0x05, 0x44, 0x04, 0x0e, 0x2a, 0x80, 0xaa, 0x06, 0x24, 0x04,
+      0x24, 0x04, 0x28, 0x08, 0x34, 0x0b, 0x01, 0x80, 0x90, 0x81, 0x37, 0x09,
+      0x16, 0x0a, 0x08, 0x80, 0x98, 0x39, 0x03, 0x63, 0x08, 0x09, 0x30, 0x16,
+      0x05, 0x21, 0x03, 0x1b, 0x05, 0x01, 0x40, 0x38, 0x04, 0x4b, 0x05, 0x2f,
+      0x04, 0x0a, 0x07, 0x09, 0x07, 0x40, 0x20, 0x27, 0x04, 0x0c, 0x09, 0x36,
+      0x03, 0x3a, 0x05, 0x1a, 0x07, 0x04, 0x0c, 0x07, 0x50, 0x49, 0x37, 0x33,
+      0x0d, 0x33, 0x07, 0x2e, 0x08, 0x0a, 0x81, 0x26, 0x52, 0x4e, 0x28, 0x08,
+      0x2a, 0x56, 0x1c, 0x14, 0x17, 0x09, 0x4e, 0x04, 0x1e, 0x0f, 0x43, 0x0e,
+      0x19, 0x07, 0x0a, 0x06, 0x48, 0x08, 0x27, 0x09, 0x75, 0x0b, 0x3f, 0x41,
+      0x2a, 0x06, 0x3b, 0x05, 0x0a, 0x06, 0x51, 0x06, 0x01, 0x05, 0x10, 0x03,
+      0x05, 0x80, 0x8b, 0x62, 0x1e, 0x48, 0x08, 0x0a, 0x80, 0xa6, 0x5e, 0x22,
+      0x45, 0x0b, 0x0a, 0x06, 0x0d, 0x13, 0x39, 0x07, 0x0a, 0x36, 0x2c, 0x04,
+      0x10, 0x80, 0xc0, 0x3c, 0x64, 0x53, 0x0c, 0x48, 0x09, 0x0a, 0x46, 0x45,
+      0x1b, 0x48, 0x08, 0x53, 0x1d, 0x39, 0x81, 0x07, 0x46, 0x0a, 0x1d, 0x03,
+      0x47, 0x49, 0x37, 0x03, 0x0e, 0x08, 0x0a, 0x06, 0x39, 0x07, 0x0a, 0x81,
+      0x36, 0x19, 0x80, 0xb7, 0x01, 0x0f, 0x32, 0x0d, 0x83, 0x9b, 0x66, 0x75,
+      0x0b, 0x80, 0xc4, 0x8a, 0xbc, 0x84, 0x2f, 0x8f, 0xd1, 0x82, 0x47, 0xa1,
+      0xb9, 0x82, 0x39, 0x07, 0x2a, 0x04, 0x02, 0x60, 0x26, 0x0a, 0x46, 0x0a,
+      0x28, 0x05, 0x13, 0x82, 0xb0, 0x5b, 0x65, 0x4b, 0x04, 0x39, 0x07, 0x11,
+      0x40, 0x05, 0x0b, 0x02, 0x0e, 0x97, 0xf8, 0x08, 0x84, 0xd6, 0x2a, 0x09,
+      0xa2, 0xf7, 0x81, 0x1f, 0x31, 0x03, 0x11, 0x04, 0x08, 0x81, 0x8c, 0x89,
+      0x04, 0x6b, 0x05, 0x0d, 0x03, 0x09, 0x07, 0x10, 0x93, 0x60, 0x80, 0xf6,
+      0x0a, 0x73, 0x08, 0x6e, 0x17, 0x46, 0x80, 0x9a, 0x14, 0x0c, 0x57, 0x09,
+      0x19, 0x80, 0x87, 0x81, 0x47, 0x03, 0x85, 0x42, 0x0f, 0x15, 0x85, 0x50,
+      0x2b, 0x80, 0xd5, 0x2d, 0x03, 0x1a, 0x04, 0x02, 0x81, 0x70, 0x3a, 0x05,
+      0x01, 0x85, 0x00, 0x80, 0xd7, 0x29, 0x4c, 0x04, 0x0a, 0x04, 0x02, 0x83,
+      0x11, 0x44, 0x4c, 0x3d, 0x80, 0xc2, 0x3c, 0x06, 0x01, 0x04, 0x55, 0x05,
+      0x1b, 0x34, 0x02, 0x81, 0x0e, 0x2c, 0x04, 0x64, 0x0c, 0x56, 0x0a, 0x80,
+      0xae, 0x38, 0x1d, 0x0d, 0x2c, 0x04, 0x09, 0x07, 0x02, 0x0e, 0x06, 0x80,
+      0x9a, 0x83, 0xd8, 0x08, 0x0d, 0x03, 0x0d, 0x03, 0x74, 0x0c, 0x59, 0x07,
+      0x0c, 0x14, 0x0c, 0x04, 0x38, 0x08, 0x0a, 0x06, 0x28, 0x08, 0x22, 0x4e,
+      0x81, 0x54, 0x0c, 0x15, 0x03, 0x03, 0x05, 0x07, 0x09, 0x19, 0x07, 0x07,
+      0x09, 0x03, 0x0d, 0x07, 0x29, 0x80, 0xcb, 0x25, 0x0a, 0x84, 0x06,
+  };
+  auto lower = static_cast<uint16_t>(cp);
+  if (cp < 0x10000) {
+    return is_printable(lower, singletons0,
+                        sizeof(singletons0) / sizeof(*singletons0),
+                        singletons0_lower, normal0, sizeof(normal0));
+  }
+  if (cp < 0x20000) {
+    return is_printable(lower, singletons1,
+                        sizeof(singletons1) / sizeof(*singletons1),
+                        singletons1_lower, normal1, sizeof(normal1));
+  }
+  if (0x2a6de <= cp && cp < 0x2a700) return false;
+  if (0x2b735 <= cp && cp < 0x2b740) return false;
+  if (0x2b81e <= cp && cp < 0x2b820) return false;
+  if (0x2cea2 <= cp && cp < 0x2ceb0) return false;
+  if (0x2ebe1 <= cp && cp < 0x2f800) return false;
+  if (0x2fa1e <= cp && cp < 0x30000) return false;
+  if (0x3134b <= cp && cp < 0xe0100) return false;
+  if (0xe01f0 <= cp && cp < 0x110000) return false;
+  return cp < 0x110000;
+}
+
+}  // namespace detail
+
+FMT_END_NAMESPACE
+
+#endif  // FMT_FORMAT_INL_H_
diff --git a/vm/fmt/format.h b/vm/fmt/format.h
new file mode 100644 (file)
index 0000000..7637c8a
--- /dev/null
@@ -0,0 +1,4535 @@
+/*
+  Formatting library for C++
+
+  Copyright (c) 2012 - present, Victor Zverovich
+
+  Permission is hereby granted, free of charge, to any person obtaining
+  a copy of this software and associated documentation files (the
+  "Software"), to deal in the Software without restriction, including
+  without limitation the rights to use, copy, modify, merge, publish,
+  distribute, sublicense, and/or sell copies of the Software, and to
+  permit persons to whom the Software is furnished to do so, subject to
+  the following conditions:
+
+  The above copyright notice and this permission notice shall be
+  included in all copies or substantial portions of the Software.
+
+  THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+  EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+  MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+  NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+  LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+  OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+  WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+  --- Optional exception to the license ---
+
+  As an exception, if, as a result of your compiling your source code, portions
+  of this Software are embedded into a machine-executable object form of such
+  source code, you may redistribute such embedded portions in such object form
+  without including the above copyright and permission notices.
+ */
+
+#ifndef FMT_FORMAT_H_
+#define FMT_FORMAT_H_
+
+#include <cmath>             // std::signbit
+#include <cstdint>           // uint32_t
+#include <cstring>           // std::memcpy
+#include <initializer_list>  // std::initializer_list
+#include <limits>            // std::numeric_limits
+#include <memory>            // std::uninitialized_copy
+#include <stdexcept>         // std::runtime_error
+#include <system_error>      // std::system_error
+
+#ifdef __cpp_lib_bit_cast
+#  include <bit>  // std::bit_cast
+#endif
+
+#include "core.h"
+
+#if defined __cpp_inline_variables && __cpp_inline_variables >= 201606L
+#  define FMT_INLINE_VARIABLE inline
+#else
+#  define FMT_INLINE_VARIABLE
+#endif
+
+#if FMT_HAS_CPP17_ATTRIBUTE(fallthrough)
+#  define FMT_FALLTHROUGH [[fallthrough]]
+#elif defined(__clang__)
+#  define FMT_FALLTHROUGH [[clang::fallthrough]]
+#elif FMT_GCC_VERSION >= 700 && \
+    (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= 520)
+#  define FMT_FALLTHROUGH [[gnu::fallthrough]]
+#else
+#  define FMT_FALLTHROUGH
+#endif
+
+#ifndef FMT_DEPRECATED
+#  if FMT_HAS_CPP14_ATTRIBUTE(deprecated) || FMT_MSC_VERSION >= 1900
+#    define FMT_DEPRECATED [[deprecated]]
+#  else
+#    if (defined(__GNUC__) && !defined(__LCC__)) || defined(__clang__)
+#      define FMT_DEPRECATED __attribute__((deprecated))
+#    elif FMT_MSC_VERSION
+#      define FMT_DEPRECATED __declspec(deprecated)
+#    else
+#      define FMT_DEPRECATED /* deprecated */
+#    endif
+#  endif
+#endif
+
+#ifndef FMT_NO_UNIQUE_ADDRESS
+#  if FMT_CPLUSPLUS >= 202002L
+#    if FMT_HAS_CPP_ATTRIBUTE(no_unique_address)
+#      define FMT_NO_UNIQUE_ADDRESS [[no_unique_address]]
+// VS2019 v16.10 and later except clang-cl (https://reviews.llvm.org/D110485)
+#    elif (FMT_MSC_VERSION >= 1929) && !FMT_CLANG_VERSION
+#      define FMT_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
+#    endif
+#  endif
+#endif
+#ifndef FMT_NO_UNIQUE_ADDRESS
+#  define FMT_NO_UNIQUE_ADDRESS
+#endif
+
+// Visibility when compiled as a shared library/object.
+#if defined(FMT_LIB_EXPORT) || defined(FMT_SHARED)
+#  define FMT_SO_VISIBILITY(value) FMT_VISIBILITY(value)
+#else
+#  define FMT_SO_VISIBILITY(value)
+#endif
+
+#ifdef __has_builtin
+#  define FMT_HAS_BUILTIN(x) __has_builtin(x)
+#else
+#  define FMT_HAS_BUILTIN(x) 0
+#endif
+
+#if FMT_GCC_VERSION || FMT_CLANG_VERSION
+#  define FMT_NOINLINE __attribute__((noinline))
+#else
+#  define FMT_NOINLINE
+#endif
+
+#ifndef FMT_THROW
+#  if FMT_EXCEPTIONS
+#    if FMT_MSC_VERSION || defined(__NVCC__)
+FMT_BEGIN_NAMESPACE
+namespace detail {
+template <typename Exception> inline void do_throw(const Exception& x) {
+  // Silence unreachable code warnings in MSVC and NVCC because these
+  // are nearly impossible to fix in a generic code.
+  volatile bool b = true;
+  if (b) throw x;
+}
+}  // namespace detail
+FMT_END_NAMESPACE
+#      define FMT_THROW(x) detail::do_throw(x)
+#    else
+#      define FMT_THROW(x) throw x
+#    endif
+#  else
+#    define FMT_THROW(x) \
+      ::fmt::detail::assert_fail(__FILE__, __LINE__, (x).what())
+#  endif
+#endif
+
+#if FMT_EXCEPTIONS
+#  define FMT_TRY try
+#  define FMT_CATCH(x) catch (x)
+#else
+#  define FMT_TRY if (true)
+#  define FMT_CATCH(x) if (false)
+#endif
+
+#ifndef FMT_MAYBE_UNUSED
+#  if FMT_HAS_CPP17_ATTRIBUTE(maybe_unused)
+#    define FMT_MAYBE_UNUSED [[maybe_unused]]
+#  else
+#    define FMT_MAYBE_UNUSED
+#  endif
+#endif
+
+#ifndef FMT_USE_USER_DEFINED_LITERALS
+// EDG based compilers (Intel, NVIDIA, Elbrus, etc), GCC and MSVC support UDLs.
+//
+// GCC before 4.9 requires a space in `operator"" _a` which is invalid in later
+// compiler versions.
+#  if (FMT_HAS_FEATURE(cxx_user_literals) || FMT_GCC_VERSION >= 409 || \
+       FMT_MSC_VERSION >= 1900) &&                                     \
+      (!defined(__EDG_VERSION__) || __EDG_VERSION__ >= /* UDL feature */ 480)
+#    define FMT_USE_USER_DEFINED_LITERALS 1
+#  else
+#    define FMT_USE_USER_DEFINED_LITERALS 0
+#  endif
+#endif
+
+// Defining FMT_REDUCE_INT_INSTANTIATIONS to 1, will reduce the number of
+// integer formatter template instantiations to just one by only using the
+// largest integer type. This results in a reduction in binary size but will
+// cause a decrease in integer formatting performance.
+#if !defined(FMT_REDUCE_INT_INSTANTIATIONS)
+#  define FMT_REDUCE_INT_INSTANTIATIONS 0
+#endif
+
+// __builtin_clz is broken in clang with Microsoft CodeGen:
+// https://github.com/fmtlib/fmt/issues/519.
+#if !FMT_MSC_VERSION
+#  if FMT_HAS_BUILTIN(__builtin_clz) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CLZ(n) __builtin_clz(n)
+#  endif
+#  if FMT_HAS_BUILTIN(__builtin_clzll) || FMT_GCC_VERSION || FMT_ICC_VERSION
+#    define FMT_BUILTIN_CLZLL(n) __builtin_clzll(n)
+#  endif
+#endif
+
+// __builtin_ctz is broken in Intel Compiler Classic on Windows:
+// https://github.com/fmtlib/fmt/issues/2510.
+#ifndef __ICL
+#  if FMT_HAS_BUILTIN(__builtin_ctz) || FMT_GCC_VERSION || FMT_ICC_VERSION || \
+      defined(__NVCOMPILER)
+#    define FMT_BUILTIN_CTZ(n) __builtin_ctz(n)
+#  endif
+#  if FMT_HAS_BUILTIN(__builtin_ctzll) || FMT_GCC_VERSION || \
+      FMT_ICC_VERSION || defined(__NVCOMPILER)
+#    define FMT_BUILTIN_CTZLL(n) __builtin_ctzll(n)
+#  endif
+#endif
+
+#if FMT_MSC_VERSION
+#  include <intrin.h>  // _BitScanReverse[64], _BitScanForward[64], _umul128
+#endif
+
+// Some compilers masquerade as both MSVC and GCC-likes or otherwise support
+// __builtin_clz and __builtin_clzll, so only define FMT_BUILTIN_CLZ using the
+// MSVC intrinsics if the clz and clzll builtins are not available.
+#if FMT_MSC_VERSION && !defined(FMT_BUILTIN_CLZLL) && \
+    !defined(FMT_BUILTIN_CTZLL)
+FMT_BEGIN_NAMESPACE
+namespace detail {
+// Avoid Clang with Microsoft CodeGen's -Wunknown-pragmas warning.
+#  if !defined(__clang__)
+#    pragma intrinsic(_BitScanForward)
+#    pragma intrinsic(_BitScanReverse)
+#    if defined(_WIN64)
+#      pragma intrinsic(_BitScanForward64)
+#      pragma intrinsic(_BitScanReverse64)
+#    endif
+#  endif
+
+inline auto clz(uint32_t x) -> int {
+  unsigned long r = 0;
+  _BitScanReverse(&r, x);
+  FMT_ASSERT(x != 0, "");
+  // Static analysis complains about using uninitialized data
+  // "r", but the only way that can happen is if "x" is 0,
+  // which the callers guarantee to not happen.
+  FMT_MSC_WARNING(suppress : 6102)
+  return 31 ^ static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CLZ(n) detail::clz(n)
+
+inline auto clzll(uint64_t x) -> int {
+  unsigned long r = 0;
+#  ifdef _WIN64
+  _BitScanReverse64(&r, x);
+#  else
+  // Scan the high 32 bits.
+  if (_BitScanReverse(&r, static_cast<uint32_t>(x >> 32)))
+    return 63 ^ static_cast<int>(r + 32);
+  // Scan the low 32 bits.
+  _BitScanReverse(&r, static_cast<uint32_t>(x));
+#  endif
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+  return 63 ^ static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CLZLL(n) detail::clzll(n)
+
+inline auto ctz(uint32_t x) -> int {
+  unsigned long r = 0;
+  _BitScanForward(&r, x);
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+  return static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CTZ(n) detail::ctz(n)
+
+inline auto ctzll(uint64_t x) -> int {
+  unsigned long r = 0;
+  FMT_ASSERT(x != 0, "");
+  FMT_MSC_WARNING(suppress : 6102)  // Suppress a bogus static analysis warning.
+#  ifdef _WIN64
+  _BitScanForward64(&r, x);
+#  else
+  // Scan the low 32 bits.
+  if (_BitScanForward(&r, static_cast<uint32_t>(x))) return static_cast<int>(r);
+  // Scan the high 32 bits.
+  _BitScanForward(&r, static_cast<uint32_t>(x >> 32));
+  r += 32;
+#  endif
+  return static_cast<int>(r);
+}
+#  define FMT_BUILTIN_CTZLL(n) detail::ctzll(n)
+}  // namespace detail
+FMT_END_NAMESPACE
+#endif
+
+FMT_BEGIN_NAMESPACE
+namespace detail {
+
+FMT_CONSTEXPR inline void abort_fuzzing_if(bool condition) {
+  ignore_unused(condition);
+#ifdef FMT_FUZZ
+  if (condition) throw std::runtime_error("fuzzing limit reached");
+#endif
+}
+
+template <typename CharT, CharT... C> struct string_literal {
+  static constexpr CharT value[sizeof...(C)] = {C...};
+  constexpr operator basic_string_view<CharT>() const {
+    return {value, sizeof...(C)};
+  }
+};
+
+#if FMT_CPLUSPLUS < 201703L
+template <typename CharT, CharT... C>
+constexpr CharT string_literal<CharT, C...>::value[sizeof...(C)];
+#endif
+
+// Implementation of std::bit_cast for pre-C++20.
+template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) == sizeof(From))>
+FMT_CONSTEXPR20 auto bit_cast(const From& from) -> To {
+#ifdef __cpp_lib_bit_cast
+  if (is_constant_evaluated()) return std::bit_cast<To>(from);
+#endif
+  auto to = To();
+  // The cast suppresses a bogus -Wclass-memaccess on GCC.
+  std::memcpy(static_cast<void*>(&to), &from, sizeof(to));
+  return to;
+}
+
+inline auto is_big_endian() -> bool {
+#ifdef _WIN32
+  return false;
+#elif defined(__BIG_ENDIAN__)
+  return true;
+#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__)
+  return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__;
+#else
+  struct bytes {
+    char data[sizeof(int)];
+  };
+  return bit_cast<bytes>(1).data[0] == 0;
+#endif
+}
+
+class uint128_fallback {
+ private:
+  uint64_t lo_, hi_;
+
+ public:
+  constexpr uint128_fallback(uint64_t hi, uint64_t lo) : lo_(lo), hi_(hi) {}
+  constexpr uint128_fallback(uint64_t value = 0) : lo_(value), hi_(0) {}
+
+  constexpr auto high() const noexcept -> uint64_t { return hi_; }
+  constexpr auto low() const noexcept -> uint64_t { return lo_; }
+
+  template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
+  constexpr explicit operator T() const {
+    return static_cast<T>(lo_);
+  }
+
+  friend constexpr auto operator==(const uint128_fallback& lhs,
+                                   const uint128_fallback& rhs) -> bool {
+    return lhs.hi_ == rhs.hi_ && lhs.lo_ == rhs.lo_;
+  }
+  friend constexpr auto operator!=(const uint128_fallback& lhs,
+                                   const uint128_fallback& rhs) -> bool {
+    return !(lhs == rhs);
+  }
+  friend constexpr auto operator>(const uint128_fallback& lhs,
+                                  const uint128_fallback& rhs) -> bool {
+    return lhs.hi_ != rhs.hi_ ? lhs.hi_ > rhs.hi_ : lhs.lo_ > rhs.lo_;
+  }
+  friend constexpr auto operator|(const uint128_fallback& lhs,
+                                  const uint128_fallback& rhs)
+      -> uint128_fallback {
+    return {lhs.hi_ | rhs.hi_, lhs.lo_ | rhs.lo_};
+  }
+  friend constexpr auto operator&(const uint128_fallback& lhs,
+                                  const uint128_fallback& rhs)
+      -> uint128_fallback {
+    return {lhs.hi_ & rhs.hi_, lhs.lo_ & rhs.lo_};
+  }
+  friend constexpr auto operator~(const uint128_fallback& n)
+      -> uint128_fallback {
+    return {~n.hi_, ~n.lo_};
+  }
+  friend auto operator+(const uint128_fallback& lhs,
+                        const uint128_fallback& rhs) -> uint128_fallback {
+    auto result = uint128_fallback(lhs);
+    result += rhs;
+    return result;
+  }
+  friend auto operator*(const uint128_fallback& lhs, uint32_t rhs)
+      -> uint128_fallback {
+    FMT_ASSERT(lhs.hi_ == 0, "");
+    uint64_t hi = (lhs.lo_ >> 32) * rhs;
+    uint64_t lo = (lhs.lo_ & ~uint32_t()) * rhs;
+    uint64_t new_lo = (hi << 32) + lo;
+    return {(hi >> 32) + (new_lo < lo ? 1 : 0), new_lo};
+  }
+  friend auto operator-(const uint128_fallback& lhs, uint64_t rhs)
+      -> uint128_fallback {
+    return {lhs.hi_ - (lhs.lo_ < rhs ? 1 : 0), lhs.lo_ - rhs};
+  }
+  FMT_CONSTEXPR auto operator>>(int shift) const -> uint128_fallback {
+    if (shift == 64) return {0, hi_};
+    if (shift > 64) return uint128_fallback(0, hi_) >> (shift - 64);
+    return {hi_ >> shift, (hi_ << (64 - shift)) | (lo_ >> shift)};
+  }
+  FMT_CONSTEXPR auto operator<<(int shift) const -> uint128_fallback {
+    if (shift == 64) return {lo_, 0};
+    if (shift > 64) return uint128_fallback(lo_, 0) << (shift - 64);
+    return {hi_ << shift | (lo_ >> (64 - shift)), (lo_ << shift)};
+  }
+  FMT_CONSTEXPR auto operator>>=(int shift) -> uint128_fallback& {
+    return *this = *this >> shift;
+  }
+  FMT_CONSTEXPR void operator+=(uint128_fallback n) {
+    uint64_t new_lo = lo_ + n.lo_;
+    uint64_t new_hi = hi_ + n.hi_ + (new_lo < lo_ ? 1 : 0);
+    FMT_ASSERT(new_hi >= hi_, "");
+    lo_ = new_lo;
+    hi_ = new_hi;
+  }
+  FMT_CONSTEXPR void operator&=(uint128_fallback n) {
+    lo_ &= n.lo_;
+    hi_ &= n.hi_;
+  }
+
+  FMT_CONSTEXPR20 auto operator+=(uint64_t n) noexcept -> uint128_fallback& {
+    if (is_constant_evaluated()) {
+      lo_ += n;
+      hi_ += (lo_ < n ? 1 : 0);
+      return *this;
+    }
+#if FMT_HAS_BUILTIN(__builtin_addcll) && !defined(__ibmxl__)
+    unsigned long long carry;
+    lo_ = __builtin_addcll(lo_, n, 0, &carry);
+    hi_ += carry;
+#elif FMT_HAS_BUILTIN(__builtin_ia32_addcarryx_u64) && !defined(__ibmxl__)
+    unsigned long long result;
+    auto carry = __builtin_ia32_addcarryx_u64(0, lo_, n, &result);
+    lo_ = result;
+    hi_ += carry;
+#elif defined(_MSC_VER) && defined(_M_X64)
+    auto carry = _addcarry_u64(0, lo_, n, &lo_);
+    _addcarry_u64(carry, hi_, 0, &hi_);
+#else
+    lo_ += n;
+    hi_ += (lo_ < n ? 1 : 0);
+#endif
+    return *this;
+  }
+};
+
+using uint128_t = conditional_t<FMT_USE_INT128, uint128_opt, uint128_fallback>;
+
+#ifdef UINTPTR_MAX
+using uintptr_t = ::uintptr_t;
+#else
+using uintptr_t = uint128_t;
+#endif
+
+// Returns the largest possible value for type T. Same as
+// std::numeric_limits<T>::max() but shorter and not affected by the max macro.
+template <typename T> constexpr auto max_value() -> T {
+  return (std::numeric_limits<T>::max)();
+}
+template <typename T> constexpr auto num_bits() -> int {
+  return std::numeric_limits<T>::digits;
+}
+// std::numeric_limits<T>::digits may return 0 for 128-bit ints.
+template <> constexpr auto num_bits<int128_opt>() -> int { return 128; }
+template <> constexpr auto num_bits<uint128_t>() -> int { return 128; }
+
+// A heterogeneous bit_cast used for converting 96-bit long double to uint128_t
+// and 128-bit pointers to uint128_fallback.
+template <typename To, typename From, FMT_ENABLE_IF(sizeof(To) > sizeof(From))>
+inline auto bit_cast(const From& from) -> To {
+  constexpr auto size = static_cast<int>(sizeof(From) / sizeof(unsigned));
+  struct data_t {
+    unsigned value[static_cast<unsigned>(size)];
+  } data = bit_cast<data_t>(from);
+  auto result = To();
+  if (const_check(is_big_endian())) {
+    for (int i = 0; i < size; ++i)
+      result = (result << num_bits<unsigned>()) | data.value[i];
+  } else {
+    for (int i = size - 1; i >= 0; --i)
+      result = (result << num_bits<unsigned>()) | data.value[i];
+  }
+  return result;
+}
+
+template <typename UInt>
+FMT_CONSTEXPR20 inline auto countl_zero_fallback(UInt n) -> int {
+  int lz = 0;
+  constexpr UInt msb_mask = static_cast<UInt>(1) << (num_bits<UInt>() - 1);
+  for (; (n & msb_mask) == 0; n <<= 1) lz++;
+  return lz;
+}
+
+FMT_CONSTEXPR20 inline auto countl_zero(uint32_t n) -> int {
+#ifdef FMT_BUILTIN_CLZ
+  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZ(n);
+#endif
+  return countl_zero_fallback(n);
+}
+
+FMT_CONSTEXPR20 inline auto countl_zero(uint64_t n) -> int {
+#ifdef FMT_BUILTIN_CLZLL
+  if (!is_constant_evaluated()) return FMT_BUILTIN_CLZLL(n);
+#endif
+  return countl_zero_fallback(n);
+}
+
+FMT_INLINE void assume(bool condition) {
+  (void)condition;
+#if FMT_HAS_BUILTIN(__builtin_assume) && !FMT_ICC_VERSION
+  __builtin_assume(condition);
+#elif FMT_GCC_VERSION
+  if (!condition) __builtin_unreachable();
+#endif
+}
+
+// An approximation of iterator_t for pre-C++20 systems.
+template <typename T>
+using iterator_t = decltype(std::begin(std::declval<T&>()));
+template <typename T> using sentinel_t = decltype(std::end(std::declval<T&>()));
+
+// A workaround for std::string not having mutable data() until C++17.
+template <typename Char>
+inline auto get_data(std::basic_string<Char>& s) -> Char* {
+  return &s[0];
+}
+template <typename Container>
+inline auto get_data(Container& c) -> typename Container::value_type* {
+  return c.data();
+}
+
+// Attempts to reserve space for n extra characters in the output range.
+// Returns a pointer to the reserved range or a reference to it.
+template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
+#if FMT_CLANG_VERSION >= 307 && !FMT_ICC_VERSION
+__attribute__((no_sanitize("undefined")))
+#endif
+inline auto
+reserve(std::back_insert_iterator<Container> it, size_t n) ->
+    typename Container::value_type* {
+  Container& c = get_container(it);
+  size_t size = c.size();
+  c.resize(size + n);
+  return get_data(c) + size;
+}
+
+template <typename T>
+inline auto reserve(buffer_appender<T> it, size_t n) -> buffer_appender<T> {
+  buffer<T>& buf = get_container(it);
+  buf.try_reserve(buf.size() + n);
+  return it;
+}
+
+template <typename Iterator>
+constexpr auto reserve(Iterator& it, size_t) -> Iterator& {
+  return it;
+}
+
+template <typename OutputIt>
+using reserve_iterator =
+    remove_reference_t<decltype(reserve(std::declval<OutputIt&>(), 0))>;
+
+template <typename T, typename OutputIt>
+constexpr auto to_pointer(OutputIt, size_t) -> T* {
+  return nullptr;
+}
+template <typename T> auto to_pointer(buffer_appender<T> it, size_t n) -> T* {
+  buffer<T>& buf = get_container(it);
+  auto size = buf.size();
+  if (buf.capacity() < size + n) return nullptr;
+  buf.try_resize(size + n);
+  return buf.data() + size;
+}
+
+template <typename Container, FMT_ENABLE_IF(is_contiguous<Container>::value)>
+inline auto base_iterator(std::back_insert_iterator<Container> it,
+                          typename Container::value_type*)
+    -> std::back_insert_iterator<Container> {
+  return it;
+}
+
+template <typename Iterator>
+constexpr auto base_iterator(Iterator, Iterator it) -> Iterator {
+  return it;
+}
+
+// <algorithm> is spectacularly slow to compile in C++20 so use a simple fill_n
+// instead (#1998).
+template <typename OutputIt, typename Size, typename T>
+FMT_CONSTEXPR auto fill_n(OutputIt out, Size count, const T& value)
+    -> OutputIt {
+  for (Size i = 0; i < count; ++i) *out++ = value;
+  return out;
+}
+template <typename T, typename Size>
+FMT_CONSTEXPR20 auto fill_n(T* out, Size count, char value) -> T* {
+  if (is_constant_evaluated()) {
+    return fill_n<T*, Size, T>(out, count, value);
+  }
+  std::memset(out, value, to_unsigned(count));
+  return out + count;
+}
+
+#ifdef __cpp_char8_t
+using char8_type = char8_t;
+#else
+enum char8_type : unsigned char {};
+#endif
+
+template <typename OutChar, typename InputIt, typename OutputIt>
+FMT_CONSTEXPR FMT_NOINLINE auto copy_str_noinline(InputIt begin, InputIt end,
+                                                  OutputIt out) -> OutputIt {
+  return copy_str<OutChar>(begin, end, out);
+}
+
+// A public domain branchless UTF-8 decoder by Christopher Wellons:
+// https://github.com/skeeto/branchless-utf8
+/* Decode the next character, c, from s, reporting errors in e.
+ *
+ * Since this is a branchless decoder, four bytes will be read from the
+ * buffer regardless of the actual length of the next character. This
+ * means the buffer _must_ have at least three bytes of zero padding
+ * following the end of the data stream.
+ *
+ * Errors are reported in e, which will be non-zero if the parsed
+ * character was somehow invalid: invalid byte sequence, non-canonical
+ * encoding, or a surrogate half.
+ *
+ * The function returns a pointer to the next character. When an error
+ * occurs, this pointer will be a guess that depends on the particular
+ * error, but it will always advance at least one byte.
+ */
+FMT_CONSTEXPR inline auto utf8_decode(const char* s, uint32_t* c, int* e)
+    -> const char* {
+  constexpr const int masks[] = {0x00, 0x7f, 0x1f, 0x0f, 0x07};
+  constexpr const uint32_t mins[] = {4194304, 0, 128, 2048, 65536};
+  constexpr const int shiftc[] = {0, 18, 12, 6, 0};
+  constexpr const int shifte[] = {0, 6, 4, 2, 0};
+
+  int len = "\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\1\0\0\0\0\0\0\0\0\2\2\2\2\3\3\4"
+      [static_cast<unsigned char>(*s) >> 3];
+  // Compute the pointer to the next character early so that the next
+  // iteration can start working on the next character. Neither Clang
+  // nor GCC figure out this reordering on their own.
+  const char* next = s + len + !len;
+
+  using uchar = unsigned char;
+
+  // Assume a four-byte character and load four bytes. Unused bits are
+  // shifted out.
+  *c = uint32_t(uchar(s[0]) & masks[len]) << 18;
+  *c |= uint32_t(uchar(s[1]) & 0x3f) << 12;
+  *c |= uint32_t(uchar(s[2]) & 0x3f) << 6;
+  *c |= uint32_t(uchar(s[3]) & 0x3f) << 0;
+  *c >>= shiftc[len];
+
+  // Accumulate the various error conditions.
+  *e = (*c < mins[len]) << 6;       // non-canonical encoding
+  *e |= ((*c >> 11) == 0x1b) << 7;  // surrogate half?
+  *e |= (*c > 0x10FFFF) << 8;       // out of range?
+  *e |= (uchar(s[1]) & 0xc0) >> 2;
+  *e |= (uchar(s[2]) & 0xc0) >> 4;
+  *e |= uchar(s[3]) >> 6;
+  *e ^= 0x2a;  // top two bits of each tail byte correct?
+  *e >>= shifte[len];
+
+  return next;
+}
+
+constexpr FMT_INLINE_VARIABLE uint32_t invalid_code_point = ~uint32_t();
+
+// Invokes f(cp, sv) for every code point cp in s with sv being the string view
+// corresponding to the code point. cp is invalid_code_point on error.
+template <typename F>
+FMT_CONSTEXPR void for_each_codepoint(string_view s, F f) {
+  auto decode = [f](const char* buf_ptr, const char* ptr) {
+    auto cp = uint32_t();
+    auto error = 0;
+    auto end = utf8_decode(buf_ptr, &cp, &error);
+    bool result = f(error ? invalid_code_point : cp,
+                    string_view(ptr, error ? 1 : to_unsigned(end - buf_ptr)));
+    return result ? (error ? buf_ptr + 1 : end) : nullptr;
+  };
+  auto p = s.data();
+  const size_t block_size = 4;  // utf8_decode always reads blocks of 4 chars.
+  if (s.size() >= block_size) {
+    for (auto end = p + s.size() - block_size + 1; p < end;) {
+      p = decode(p, p);
+      if (!p) return;
+    }
+  }
+  if (auto num_chars_left = s.data() + s.size() - p) {
+    char buf[2 * block_size - 1] = {};
+    copy_str<char>(p, p + num_chars_left, buf);
+    const char* buf_ptr = buf;
+    do {
+      auto end = decode(buf_ptr, p);
+      if (!end) return;
+      p += end - buf_ptr;
+      buf_ptr = end;
+    } while (buf_ptr - buf < num_chars_left);
+  }
+}
+
+template <typename Char>
+inline auto compute_width(basic_string_view<Char> s) -> size_t {
+  return s.size();
+}
+
+// Computes approximate display width of a UTF-8 string.
+FMT_CONSTEXPR inline auto compute_width(string_view s) -> size_t {
+  size_t num_code_points = 0;
+  // It is not a lambda for compatibility with C++14.
+  struct count_code_points {
+    size_t* count;
+    FMT_CONSTEXPR auto operator()(uint32_t cp, string_view) const -> bool {
+      *count += detail::to_unsigned(
+          1 +
+          (cp >= 0x1100 &&
+           (cp <= 0x115f ||  // Hangul Jamo init. consonants
+            cp == 0x2329 ||  // LEFT-POINTING ANGLE BRACKET
+            cp == 0x232a ||  // RIGHT-POINTING ANGLE BRACKET
+            // CJK ... Yi except IDEOGRAPHIC HALF FILL SPACE:
+            (cp >= 0x2e80 && cp <= 0xa4cf && cp != 0x303f) ||
+            (cp >= 0xac00 && cp <= 0xd7a3) ||    // Hangul Syllables
+            (cp >= 0xf900 && cp <= 0xfaff) ||    // CJK Compatibility Ideographs
+            (cp >= 0xfe10 && cp <= 0xfe19) ||    // Vertical Forms
+            (cp >= 0xfe30 && cp <= 0xfe6f) ||    // CJK Compatibility Forms
+            (cp >= 0xff00 && cp <= 0xff60) ||    // Fullwidth Forms
+            (cp >= 0xffe0 && cp <= 0xffe6) ||    // Fullwidth Forms
+            (cp >= 0x20000 && cp <= 0x2fffd) ||  // CJK
+            (cp >= 0x30000 && cp <= 0x3fffd) ||
+            // Miscellaneous Symbols and Pictographs + Emoticons:
+            (cp >= 0x1f300 && cp <= 0x1f64f) ||
+            // Supplemental Symbols and Pictographs:
+            (cp >= 0x1f900 && cp <= 0x1f9ff))));
+      return true;
+    }
+  };
+  // We could avoid branches by using utf8_decode directly.
+  for_each_codepoint(s, count_code_points{&num_code_points});
+  return num_code_points;
+}
+
+inline auto compute_width(basic_string_view<char8_type> s) -> size_t {
+  return compute_width(
+      string_view(reinterpret_cast<const char*>(s.data()), s.size()));
+}
+
+template <typename Char>
+inline auto code_point_index(basic_string_view<Char> s, size_t n) -> size_t {
+  size_t size = s.size();
+  return n < size ? n : size;
+}
+
+// Calculates the index of the nth code point in a UTF-8 string.
+inline auto code_point_index(string_view s, size_t n) -> size_t {
+  size_t result = s.size();
+  const char* begin = s.begin();
+  for_each_codepoint(s, [begin, &n, &result](uint32_t, string_view sv) {
+    if (n != 0) {
+      --n;
+      return true;
+    }
+    result = to_unsigned(sv.begin() - begin);
+    return false;
+  });
+  return result;
+}
+
+inline auto code_point_index(basic_string_view<char8_type> s, size_t n)
+    -> size_t {
+  return code_point_index(
+      string_view(reinterpret_cast<const char*>(s.data()), s.size()), n);
+}
+
+template <typename T> struct is_integral : std::is_integral<T> {};
+template <> struct is_integral<int128_opt> : std::true_type {};
+template <> struct is_integral<uint128_t> : std::true_type {};
+
+template <typename T>
+using is_signed =
+    std::integral_constant<bool, std::numeric_limits<T>::is_signed ||
+                                     std::is_same<T, int128_opt>::value>;
+
+template <typename T>
+using is_integer =
+    bool_constant<is_integral<T>::value && !std::is_same<T, bool>::value &&
+                  !std::is_same<T, char>::value &&
+                  !std::is_same<T, wchar_t>::value>;
+
+#ifndef FMT_USE_FLOAT
+#  define FMT_USE_FLOAT 1
+#endif
+#ifndef FMT_USE_DOUBLE
+#  define FMT_USE_DOUBLE 1
+#endif
+#ifndef FMT_USE_LONG_DOUBLE
+#  define FMT_USE_LONG_DOUBLE 1
+#endif
+
+#ifndef FMT_USE_FLOAT128
+#  ifdef __clang__
+// Clang emulates GCC, so it has to appear early.
+#    if FMT_HAS_INCLUDE(<quadmath.h>)
+#      define FMT_USE_FLOAT128 1
+#    endif
+#  elif defined(__GNUC__)
+// GNU C++:
+#    if defined(_GLIBCXX_USE_FLOAT128) && !defined(__STRICT_ANSI__)
+#      define FMT_USE_FLOAT128 1
+#    endif
+#  endif
+#  ifndef FMT_USE_FLOAT128
+#    define FMT_USE_FLOAT128 0
+#  endif
+#endif
+
+#if FMT_USE_FLOAT128
+using float128 = __float128;
+#else
+using float128 = void;
+#endif
+template <typename T> using is_float128 = std::is_same<T, float128>;
+
+template <typename T>
+using is_floating_point =
+    bool_constant<std::is_floating_point<T>::value || is_float128<T>::value>;
+
+template <typename T, bool = std::is_floating_point<T>::value>
+struct is_fast_float : bool_constant<std::numeric_limits<T>::is_iec559 &&
+                                     sizeof(T) <= sizeof(double)> {};
+template <typename T> struct is_fast_float<T, false> : std::false_type {};
+
+template <typename T>
+using is_double_double = bool_constant<std::numeric_limits<T>::digits == 106>;
+
+#ifndef FMT_USE_FULL_CACHE_DRAGONBOX
+#  define FMT_USE_FULL_CACHE_DRAGONBOX 0
+#endif
+
+template <typename T>
+template <typename U>
+void buffer<T>::append(const U* begin, const U* end) {
+  while (begin != end) {
+    auto count = to_unsigned(end - begin);
+    try_reserve(size_ + count);
+    auto free_cap = capacity_ - size_;
+    if (free_cap < count) count = free_cap;
+    std::uninitialized_copy_n(begin, count, ptr_ + size_);
+    size_ += count;
+    begin += count;
+  }
+}
+
+template <typename T, typename Enable = void>
+struct is_locale : std::false_type {};
+template <typename T>
+struct is_locale<T, void_t<decltype(T::classic())>> : std::true_type {};
+}  // namespace detail
+
+FMT_BEGIN_EXPORT
+
+// The number of characters to store in the basic_memory_buffer object itself
+// to avoid dynamic memory allocation.
+enum { inline_buffer_size = 500 };
+
+/**
+  \rst
+  A dynamically growing memory buffer for trivially copyable/constructible types
+  with the first ``SIZE`` elements stored in the object itself.
+
+  You can use the ``memory_buffer`` type alias for ``char`` instead.
+
+  **Example**::
+
+     auto out = fmt::memory_buffer();
+     fmt::format_to(std::back_inserter(out), "The answer is {}.", 42);
+
+  This will append the following output to the ``out`` object:
+
+  .. code-block:: none
+
+     The answer is 42.
+
+  The output can be converted to an ``std::string`` with ``to_string(out)``.
+  \endrst
+ */
+template <typename T, size_t SIZE = inline_buffer_size,
+          typename Allocator = std::allocator<T>>
+class basic_memory_buffer final : public detail::buffer<T> {
+ private:
+  T store_[SIZE];
+
+  // Don't inherit from Allocator to avoid generating type_info for it.
+  FMT_NO_UNIQUE_ADDRESS Allocator alloc_;
+
+  // Deallocate memory allocated by the buffer.
+  FMT_CONSTEXPR20 void deallocate() {
+    T* data = this->data();
+    if (data != store_) alloc_.deallocate(data, this->capacity());
+  }
+
+ protected:
+  FMT_CONSTEXPR20 void grow(size_t size) override {
+    detail::abort_fuzzing_if(size > 5000);
+    const size_t max_size = std::allocator_traits<Allocator>::max_size(alloc_);
+    size_t old_capacity = this->capacity();
+    size_t new_capacity = old_capacity + old_capacity / 2;
+    if (size > new_capacity)
+      new_capacity = size;
+    else if (new_capacity > max_size)
+      new_capacity = size > max_size ? size : max_size;
+    T* old_data = this->data();
+    T* new_data =
+        std::allocator_traits<Allocator>::allocate(alloc_, new_capacity);
+    // Suppress a bogus -Wstringop-overflow in gcc 13.1 (#3481).
+    detail::assume(this->size() <= new_capacity);
+    // The following code doesn't throw, so the raw pointer above doesn't leak.
+    std::uninitialized_copy_n(old_data, this->size(), new_data);
+    this->set(new_data, new_capacity);
+    // deallocate must not throw according to the standard, but even if it does,
+    // the buffer already uses the new storage and will deallocate it in
+    // destructor.
+    if (old_data != store_) alloc_.deallocate(old_data, old_capacity);
+  }
+
+ public:
+  using value_type = T;
+  using const_reference = const T&;
+
+  FMT_CONSTEXPR20 explicit basic_memory_buffer(
+      const Allocator& alloc = Allocator())
+      : alloc_(alloc) {
+    this->set(store_, SIZE);
+    if (detail::is_constant_evaluated()) detail::fill_n(store_, SIZE, T());
+  }
+  FMT_CONSTEXPR20 ~basic_memory_buffer() { deallocate(); }
+
+ private:
+  // Move data from other to this buffer.
+  FMT_CONSTEXPR20 void move(basic_memory_buffer& other) {
+    alloc_ = std::move(other.alloc_);
+    T* data = other.data();
+    size_t size = other.size(), capacity = other.capacity();
+    if (data == other.store_) {
+      this->set(store_, capacity);
+      detail::copy_str<T>(other.store_, other.store_ + size, store_);
+    } else {
+      this->set(data, capacity);
+      // Set pointer to the inline array so that delete is not called
+      // when deallocating.
+      other.set(other.store_, 0);
+      other.clear();
+    }
+    this->resize(size);
+  }
+
+ public:
+  /**
+    \rst
+    Constructs a :class:`fmt::basic_memory_buffer` object moving the content
+    of the other object to it.
+    \endrst
+   */
+  FMT_CONSTEXPR20 basic_memory_buffer(basic_memory_buffer&& other) noexcept {
+    move(other);
+  }
+
+  /**
+    \rst
+    Moves the content of the other ``basic_memory_buffer`` object to this one.
+    \endrst
+   */
+  auto operator=(basic_memory_buffer&& other) noexcept -> basic_memory_buffer& {
+    FMT_ASSERT(this != &other, "");
+    deallocate();
+    move(other);
+    return *this;
+  }
+
+  // Returns a copy of the allocator associated with this buffer.
+  auto get_allocator() const -> Allocator { return alloc_; }
+
+  /**
+    Resizes the buffer to contain *count* elements. If T is a POD type new
+    elements may not be initialized.
+   */
+  FMT_CONSTEXPR20 void resize(size_t count) { this->try_resize(count); }
+
+  /** Increases the buffer capacity to *new_capacity*. */
+  void reserve(size_t new_capacity) { this->try_reserve(new_capacity); }
+
+  using detail::buffer<T>::append;
+  template <typename ContiguousRange>
+  void append(const ContiguousRange& range) {
+    append(range.data(), range.data() + range.size());
+  }
+};
+
+using memory_buffer = basic_memory_buffer<char>;
+
+template <typename T, size_t SIZE, typename Allocator>
+struct is_contiguous<basic_memory_buffer<T, SIZE, Allocator>> : std::true_type {
+};
+
+FMT_END_EXPORT
+namespace detail {
+FMT_API auto write_console(int fd, string_view text) -> bool;
+FMT_API auto write_console(std::FILE* f, string_view text) -> bool;
+FMT_API void print(std::FILE*, string_view);
+}  // namespace detail
+
+FMT_BEGIN_EXPORT
+
+// Suppress a misleading warning in older versions of clang.
+#if FMT_CLANG_VERSION
+#  pragma clang diagnostic ignored "-Wweak-vtables"
+#endif
+
+/** An error reported from a formatting function. */
+class FMT_SO_VISIBILITY("default") format_error : public std::runtime_error {
+ public:
+  using std::runtime_error::runtime_error;
+};
+
+namespace detail_exported {
+#if FMT_USE_NONTYPE_TEMPLATE_ARGS
+template <typename Char, size_t N> struct fixed_string {
+  constexpr fixed_string(const Char (&str)[N]) {
+    detail::copy_str<Char, const Char*, Char*>(static_cast<const Char*>(str),
+                                               str + N, data);
+  }
+  Char data[N] = {};
+};
+#endif
+
+// Converts a compile-time string to basic_string_view.
+template <typename Char, size_t N>
+constexpr auto compile_string_to_view(const Char (&s)[N])
+    -> basic_string_view<Char> {
+  // Remove trailing NUL character if needed. Won't be present if this is used
+  // with a raw character array (i.e. not defined as a string).
+  return {s, N - (std::char_traits<Char>::to_int_type(s[N - 1]) == 0 ? 1 : 0)};
+}
+template <typename Char>
+constexpr auto compile_string_to_view(detail::std_string_view<Char> s)
+    -> basic_string_view<Char> {
+  return {s.data(), s.size()};
+}
+}  // namespace detail_exported
+
+class loc_value {
+ private:
+  basic_format_arg<format_context> value_;
+
+ public:
+  template <typename T, FMT_ENABLE_IF(!detail::is_float128<T>::value)>
+  loc_value(T value) : value_(detail::make_arg<format_context>(value)) {}
+
+  template <typename T, FMT_ENABLE_IF(detail::is_float128<T>::value)>
+  loc_value(T) {}
+
+  template <typename Visitor> auto visit(Visitor&& vis) -> decltype(vis(0)) {
+    return visit_format_arg(vis, value_);
+  }
+};
+
+// A locale facet that formats values in UTF-8.
+// It is parameterized on the locale to avoid the heavy <locale> include.
+template <typename Locale> class format_facet : public Locale::facet {
+ private:
+  std::string separator_;
+  std::string grouping_;
+  std::string decimal_point_;
+
+ protected:
+  virtual auto do_put(appender out, loc_value val,
+                      const format_specs<>& specs) const -> bool;
+
+ public:
+  static FMT_API typename Locale::id id;
+
+  explicit format_facet(Locale& loc);
+  explicit format_facet(string_view sep = "",
+                        std::initializer_list<unsigned char> g = {3},
+                        std::string decimal_point = ".")
+      : separator_(sep.data(), sep.size()),
+        grouping_(g.begin(), g.end()),
+        decimal_point_(decimal_point) {}
+
+  auto put(appender out, loc_value val, const format_specs<>& specs) const
+      -> bool {
+    return do_put(out, val, specs);
+  }
+};
+
+namespace detail {
+
+// Returns true if value is negative, false otherwise.
+// Same as `value < 0` but doesn't produce warnings if T is an unsigned type.
+template <typename T, FMT_ENABLE_IF(is_signed<T>::value)>
+constexpr auto is_negative(T value) -> bool {
+  return value < 0;
+}
+template <typename T, FMT_ENABLE_IF(!is_signed<T>::value)>
+constexpr auto is_negative(T) -> bool {
+  return false;
+}
+
+template <typename T>
+FMT_CONSTEXPR auto is_supported_floating_point(T) -> bool {
+  if (std::is_same<T, float>()) return FMT_USE_FLOAT;
+  if (std::is_same<T, double>()) return FMT_USE_DOUBLE;
+  if (std::is_same<T, long double>()) return FMT_USE_LONG_DOUBLE;
+  return true;
+}
+
+// Smallest of uint32_t, uint64_t, uint128_t that is large enough to
+// represent all values of an integral type T.
+template <typename T>
+using uint32_or_64_or_128_t =
+    conditional_t<num_bits<T>() <= 32 && !FMT_REDUCE_INT_INSTANTIATIONS,
+                  uint32_t,
+                  conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>>;
+template <typename T>
+using uint64_or_128_t = conditional_t<num_bits<T>() <= 64, uint64_t, uint128_t>;
+
+#define FMT_POWERS_OF_10(factor)                                  \
+  factor * 10, (factor) * 100, (factor) * 1000, (factor) * 10000, \
+      (factor) * 100000, (factor) * 1000000, (factor) * 10000000, \
+      (factor) * 100000000, (factor) * 1000000000
+
+// Converts value in the range [0, 100) to a string.
+constexpr auto digits2(size_t value) -> const char* {
+  // GCC generates slightly better code when value is pointer-size.
+  return &"0001020304050607080910111213141516171819"
+         "2021222324252627282930313233343536373839"
+         "4041424344454647484950515253545556575859"
+         "6061626364656667686970717273747576777879"
+         "8081828384858687888990919293949596979899"[value * 2];
+}
+
+// Sign is a template parameter to workaround a bug in gcc 4.8.
+template <typename Char, typename Sign> constexpr auto sign(Sign s) -> Char {
+#if !FMT_GCC_VERSION || FMT_GCC_VERSION >= 604
+  static_assert(std::is_same<Sign, sign_t>::value, "");
+#endif
+  return static_cast<Char>("\0-+ "[s]);
+}
+
+template <typename T> FMT_CONSTEXPR auto count_digits_fallback(T n) -> int {
+  int count = 1;
+  for (;;) {
+    // Integer division is slow so do it for a group of four digits instead
+    // of for every digit. The idea comes from the talk by Alexandrescu
+    // "Three Optimization Tips for C++". See speed-test for a comparison.
+    if (n < 10) return count;
+    if (n < 100) return count + 1;
+    if (n < 1000) return count + 2;
+    if (n < 10000) return count + 3;
+    n /= 10000u;
+    count += 4;
+  }
+}
+#if FMT_USE_INT128
+FMT_CONSTEXPR inline auto count_digits(uint128_opt n) -> int {
+  return count_digits_fallback(n);
+}
+#endif
+
+#ifdef FMT_BUILTIN_CLZLL
+// It is a separate function rather than a part of count_digits to workaround
+// the lack of static constexpr in constexpr functions.
+inline auto do_count_digits(uint64_t n) -> int {
+  // This has comparable performance to the version by Kendall Willets
+  // (https://github.com/fmtlib/format-benchmark/blob/master/digits10)
+  // but uses smaller tables.
+  // Maps bsr(n) to ceil(log10(pow(2, bsr(n) + 1) - 1)).
+  static constexpr uint8_t bsr2log10[] = {
+      1,  1,  1,  2,  2,  2,  3,  3,  3,  4,  4,  4,  4,  5,  5,  5,
+      6,  6,  6,  7,  7,  7,  7,  8,  8,  8,  9,  9,  9,  10, 10, 10,
+      10, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15,
+      15, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20};
+  auto t = bsr2log10[FMT_BUILTIN_CLZLL(n | 1) ^ 63];
+  static constexpr const uint64_t zero_or_powers_of_10[] = {
+      0, 0, FMT_POWERS_OF_10(1U), FMT_POWERS_OF_10(1000000000ULL),
+      10000000000000000000ULL};
+  return t - (n < zero_or_powers_of_10[t]);
+}
+#endif
+
+// Returns the number of decimal digits in n. Leading zeros are not counted
+// except for n == 0 in which case count_digits returns 1.
+FMT_CONSTEXPR20 inline auto count_digits(uint64_t n) -> int {
+#ifdef FMT_BUILTIN_CLZLL
+  if (!is_constant_evaluated()) {
+    return do_count_digits(n);
+  }
+#endif
+  return count_digits_fallback(n);
+}
+
+// Counts the number of digits in n. BITS = log2(radix).
+template <int BITS, typename UInt>
+FMT_CONSTEXPR auto count_digits(UInt n) -> int {
+#ifdef FMT_BUILTIN_CLZ
+  if (!is_constant_evaluated() && num_bits<UInt>() == 32)
+    return (FMT_BUILTIN_CLZ(static_cast<uint32_t>(n) | 1) ^ 31) / BITS + 1;
+#endif
+  // Lambda avoids unreachable code warnings from NVHPC.
+  return [](UInt m) {
+    int num_digits = 0;
+    do {
+      ++num_digits;
+    } while ((m >>= BITS) != 0);
+    return num_digits;
+  }(n);
+}
+
+#ifdef FMT_BUILTIN_CLZ
+// It is a separate function rather than a part of count_digits to workaround
+// the lack of static constexpr in constexpr functions.
+FMT_INLINE auto do_count_digits(uint32_t n) -> int {
+// An optimization by Kendall Willets from https://bit.ly/3uOIQrB.
+// This increments the upper 32 bits (log10(T) - 1) when >= T is added.
+#  define FMT_INC(T) (((sizeof(#T) - 1ull) << 32) - T)
+  static constexpr uint64_t table[] = {
+      FMT_INC(0),          FMT_INC(0),          FMT_INC(0),           // 8
+      FMT_INC(10),         FMT_INC(10),         FMT_INC(10),          // 64
+      FMT_INC(100),        FMT_INC(100),        FMT_INC(100),         // 512
+      FMT_INC(1000),       FMT_INC(1000),       FMT_INC(1000),        // 4096
+      FMT_INC(10000),      FMT_INC(10000),      FMT_INC(10000),       // 32k
+      FMT_INC(100000),     FMT_INC(100000),     FMT_INC(100000),      // 256k
+      FMT_INC(1000000),    FMT_INC(1000000),    FMT_INC(1000000),     // 2048k
+      FMT_INC(10000000),   FMT_INC(10000000),   FMT_INC(10000000),    // 16M
+      FMT_INC(100000000),  FMT_INC(100000000),  FMT_INC(100000000),   // 128M
+      FMT_INC(1000000000), FMT_INC(1000000000), FMT_INC(1000000000),  // 1024M
+      FMT_INC(1000000000), FMT_INC(1000000000)                        // 4B
+  };
+  auto inc = table[FMT_BUILTIN_CLZ(n | 1) ^ 31];
+  return static_cast<int>((n + inc) >> 32);
+}
+#endif
+
+// Optional version of count_digits for better performance on 32-bit platforms.
+FMT_CONSTEXPR20 inline auto count_digits(uint32_t n) -> int {
+#ifdef FMT_BUILTIN_CLZ
+  if (!is_constant_evaluated()) {
+    return do_count_digits(n);
+  }
+#endif
+  return count_digits_fallback(n);
+}
+
+template <typename Int> constexpr auto digits10() noexcept -> int {
+  return std::numeric_limits<Int>::digits10;
+}
+template <> constexpr auto digits10<int128_opt>() noexcept -> int { return 38; }
+template <> constexpr auto digits10<uint128_t>() noexcept -> int { return 38; }
+
+template <typename Char> struct thousands_sep_result {
+  std::string grouping;
+  Char thousands_sep;
+};
+
+template <typename Char>
+FMT_API auto thousands_sep_impl(locale_ref loc) -> thousands_sep_result<Char>;
+template <typename Char>
+inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<Char> {
+  auto result = thousands_sep_impl<char>(loc);
+  return {result.grouping, Char(result.thousands_sep)};
+}
+template <>
+inline auto thousands_sep(locale_ref loc) -> thousands_sep_result<wchar_t> {
+  return thousands_sep_impl<wchar_t>(loc);
+}
+
+template <typename Char>
+FMT_API auto decimal_point_impl(locale_ref loc) -> Char;
+template <typename Char> inline auto decimal_point(locale_ref loc) -> Char {
+  return Char(decimal_point_impl<char>(loc));
+}
+template <> inline auto decimal_point(locale_ref loc) -> wchar_t {
+  return decimal_point_impl<wchar_t>(loc);
+}
+
+// Compares two characters for equality.
+template <typename Char> auto equal2(const Char* lhs, const char* rhs) -> bool {
+  return lhs[0] == Char(rhs[0]) && lhs[1] == Char(rhs[1]);
+}
+inline auto equal2(const char* lhs, const char* rhs) -> bool {
+  return memcmp(lhs, rhs, 2) == 0;
+}
+
+// Copies two characters from src to dst.
+template <typename Char>
+FMT_CONSTEXPR20 FMT_INLINE void copy2(Char* dst, const char* src) {
+  if (!is_constant_evaluated() && sizeof(Char) == sizeof(char)) {
+    memcpy(dst, src, 2);
+    return;
+  }
+  *dst++ = static_cast<Char>(*src++);
+  *dst = static_cast<Char>(*src);
+}
+
+template <typename Iterator> struct format_decimal_result {
+  Iterator begin;
+  Iterator end;
+};
+
+// Formats a decimal unsigned integer value writing into out pointing to a
+// buffer of specified size. The caller must ensure that the buffer is large
+// enough.
+template <typename Char, typename UInt>
+FMT_CONSTEXPR20 auto format_decimal(Char* out, UInt value, int size)
+    -> format_decimal_result<Char*> {
+  FMT_ASSERT(size >= count_digits(value), "invalid digit count");
+  out += size;
+  Char* end = out;
+  while (value >= 100) {
+    // Integer division is slow so do it for a group of two digits instead
+    // of for every digit. The idea comes from the talk by Alexandrescu
+    // "Three Optimization Tips for C++". See speed-test for a comparison.
+    out -= 2;
+    copy2(out, digits2(static_cast<size_t>(value % 100)));
+    value /= 100;
+  }
+  if (value < 10) {
+    *--out = static_cast<Char>('0' + value);
+    return {out, end};
+  }
+  out -= 2;
+  copy2(out, digits2(static_cast<size_t>(value)));
+  return {out, end};
+}
+
+template <typename Char, typename UInt, typename Iterator,
+          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<Iterator>>::value)>
+FMT_CONSTEXPR inline auto format_decimal(Iterator out, UInt value, int size)
+    -> format_decimal_result<Iterator> {
+  // Buffer is large enough to hold all digits (digits10 + 1).
+  Char buffer[digits10<UInt>() + 1] = {};
+  auto end = format_decimal(buffer, value, size).end;
+  return {out, detail::copy_str_noinline<Char>(buffer, end, out)};
+}
+
+template <unsigned BASE_BITS, typename Char, typename UInt>
+FMT_CONSTEXPR auto format_uint(Char* buffer, UInt value, int num_digits,
+                               bool upper = false) -> Char* {
+  buffer += num_digits;
+  Char* end = buffer;
+  do {
+    const char* digits = upper ? "0123456789ABCDEF" : "0123456789abcdef";
+    unsigned digit = static_cast<unsigned>(value & ((1 << BASE_BITS) - 1));
+    *--buffer = static_cast<Char>(BASE_BITS < 4 ? static_cast<char>('0' + digit)
+                                                : digits[digit]);
+  } while ((value >>= BASE_BITS) != 0);
+  return end;
+}
+
+template <unsigned BASE_BITS, typename Char, typename It, typename UInt>
+FMT_CONSTEXPR inline auto format_uint(It out, UInt value, int num_digits,
+                                      bool upper = false) -> It {
+  if (auto ptr = to_pointer<Char>(out, to_unsigned(num_digits))) {
+    format_uint<BASE_BITS>(ptr, value, num_digits, upper);
+    return out;
+  }
+  // Buffer should be large enough to hold all digits (digits / BASE_BITS + 1).
+  char buffer[num_bits<UInt>() / BASE_BITS + 1] = {};
+  format_uint<BASE_BITS>(buffer, value, num_digits, upper);
+  return detail::copy_str_noinline<Char>(buffer, buffer + num_digits, out);
+}
+
+// A converter from UTF-8 to UTF-16.
+class utf8_to_utf16 {
+ private:
+  basic_memory_buffer<wchar_t> buffer_;
+
+ public:
+  FMT_API explicit utf8_to_utf16(string_view s);
+  operator basic_string_view<wchar_t>() const { return {&buffer_[0], size()}; }
+  auto size() const -> size_t { return buffer_.size() - 1; }
+  auto c_str() const -> const wchar_t* { return &buffer_[0]; }
+  auto str() const -> std::wstring { return {&buffer_[0], size()}; }
+};
+
+enum class to_utf8_error_policy { abort, replace };
+
+// A converter from UTF-16/UTF-32 (host endian) to UTF-8.
+template <typename WChar, typename Buffer = memory_buffer> class to_utf8 {
+ private:
+  Buffer buffer_;
+
+ public:
+  to_utf8() {}
+  explicit to_utf8(basic_string_view<WChar> s,
+                   to_utf8_error_policy policy = to_utf8_error_policy::abort) {
+    static_assert(sizeof(WChar) == 2 || sizeof(WChar) == 4,
+                  "Expect utf16 or utf32");
+    if (!convert(s, policy))
+      FMT_THROW(std::runtime_error(sizeof(WChar) == 2 ? "invalid utf16"
+                                                      : "invalid utf32"));
+  }
+  operator string_view() const { return string_view(&buffer_[0], size()); }
+  auto size() const -> size_t { return buffer_.size() - 1; }
+  auto c_str() const -> const char* { return &buffer_[0]; }
+  auto str() const -> std::string { return std::string(&buffer_[0], size()); }
+
+  // Performs conversion returning a bool instead of throwing exception on
+  // conversion error. This method may still throw in case of memory allocation
+  // error.
+  auto convert(basic_string_view<WChar> s,
+               to_utf8_error_policy policy = to_utf8_error_policy::abort)
+      -> bool {
+    if (!convert(buffer_, s, policy)) return false;
+    buffer_.push_back(0);
+    return true;
+  }
+  static auto convert(Buffer& buf, basic_string_view<WChar> s,
+                      to_utf8_error_policy policy = to_utf8_error_policy::abort)
+      -> bool {
+    for (auto p = s.begin(); p != s.end(); ++p) {
+      uint32_t c = static_cast<uint32_t>(*p);
+      if (sizeof(WChar) == 2 && c >= 0xd800 && c <= 0xdfff) {
+        // Handle a surrogate pair.
+        ++p;
+        if (p == s.end() || (c & 0xfc00) != 0xd800 || (*p & 0xfc00) != 0xdc00) {
+          if (policy == to_utf8_error_policy::abort) return false;
+          buf.append(string_view("\xEF\xBF\xBD"));
+          --p;
+        } else {
+          c = (c << 10) + static_cast<uint32_t>(*p) - 0x35fdc00;
+        }
+      } else if (c < 0x80) {
+        buf.push_back(static_cast<char>(c));
+      } else if (c < 0x800) {
+        buf.push_back(static_cast<char>(0xc0 | (c >> 6)));
+        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
+      } else if ((c >= 0x800 && c <= 0xd7ff) || (c >= 0xe000 && c <= 0xffff)) {
+        buf.push_back(static_cast<char>(0xe0 | (c >> 12)));
+        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
+        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
+      } else if (c >= 0x10000 && c <= 0x10ffff) {
+        buf.push_back(static_cast<char>(0xf0 | (c >> 18)));
+        buf.push_back(static_cast<char>(0x80 | ((c & 0x3ffff) >> 12)));
+        buf.push_back(static_cast<char>(0x80 | ((c & 0xfff) >> 6)));
+        buf.push_back(static_cast<char>(0x80 | (c & 0x3f)));
+      } else {
+        return false;
+      }
+    }
+    return true;
+  }
+};
+
+// Computes 128-bit result of multiplication of two 64-bit unsigned integers.
+inline auto umul128(uint64_t x, uint64_t y) noexcept -> uint128_fallback {
+#if FMT_USE_INT128
+  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
+  return {static_cast<uint64_t>(p >> 64), static_cast<uint64_t>(p)};
+#elif defined(_MSC_VER) && defined(_M_X64)
+  auto hi = uint64_t();
+  auto lo = _umul128(x, y, &hi);
+  return {hi, lo};
+#else
+  const uint64_t mask = static_cast<uint64_t>(max_value<uint32_t>());
+
+  uint64_t a = x >> 32;
+  uint64_t b = x & mask;
+  uint64_t c = y >> 32;
+  uint64_t d = y & mask;
+
+  uint64_t ac = a * c;
+  uint64_t bc = b * c;
+  uint64_t ad = a * d;
+  uint64_t bd = b * d;
+
+  uint64_t intermediate = (bd >> 32) + (ad & mask) + (bc & mask);
+
+  return {ac + (intermediate >> 32) + (ad >> 32) + (bc >> 32),
+          (intermediate << 32) + (bd & mask)};
+#endif
+}
+
+namespace dragonbox {
+// Computes floor(log10(pow(2, e))) for e in [-2620, 2620] using the method from
+// https://fmt.dev/papers/Dragonbox.pdf#page=28, section 6.1.
+inline auto floor_log10_pow2(int e) noexcept -> int {
+  FMT_ASSERT(e <= 2620 && e >= -2620, "too large exponent");
+  static_assert((-1 >> 1) == -1, "right shift is not arithmetic");
+  return (e * 315653) >> 20;
+}
+
+inline auto floor_log2_pow10(int e) noexcept -> int {
+  FMT_ASSERT(e <= 1233 && e >= -1233, "too large exponent");
+  return (e * 1741647) >> 19;
+}
+
+// Computes upper 64 bits of multiplication of two 64-bit unsigned integers.
+inline auto umul128_upper64(uint64_t x, uint64_t y) noexcept -> uint64_t {
+#if FMT_USE_INT128
+  auto p = static_cast<uint128_opt>(x) * static_cast<uint128_opt>(y);
+  return static_cast<uint64_t>(p >> 64);
+#elif defined(_MSC_VER) && defined(_M_X64)
+  return __umulh(x, y);
+#else
+  return umul128(x, y).high();
+#endif
+}
+
+// Computes upper 128 bits of multiplication of a 64-bit unsigned integer and a
+// 128-bit unsigned integer.
+inline auto umul192_upper128(uint64_t x, uint128_fallback y) noexcept
+    -> uint128_fallback {
+  uint128_fallback r = umul128(x, y.high());
+  r += umul128_upper64(x, y.low());
+  return r;
+}
+
+FMT_API auto get_cached_power(int k) noexcept -> uint128_fallback;
+
+// Type-specific information that Dragonbox uses.
+template <typename T, typename Enable = void> struct float_info;
+
+template <> struct float_info<float> {
+  using carrier_uint = uint32_t;
+  static const int exponent_bits = 8;
+  static const int kappa = 1;
+  static const int big_divisor = 100;
+  static const int small_divisor = 10;
+  static const int min_k = -31;
+  static const int max_k = 46;
+  static const int shorter_interval_tie_lower_threshold = -35;
+  static const int shorter_interval_tie_upper_threshold = -35;
+};
+
+template <> struct float_info<double> {
+  using carrier_uint = uint64_t;
+  static const int exponent_bits = 11;
+  static const int kappa = 2;
+  static const int big_divisor = 1000;
+  static const int small_divisor = 100;
+  static const int min_k = -292;
+  static const int max_k = 341;
+  static const int shorter_interval_tie_lower_threshold = -77;
+  static const int shorter_interval_tie_upper_threshold = -77;
+};
+
+// An 80- or 128-bit floating point number.
+template <typename T>
+struct float_info<T, enable_if_t<std::numeric_limits<T>::digits == 64 ||
+                                 std::numeric_limits<T>::digits == 113 ||
+                                 is_float128<T>::value>> {
+  using carrier_uint = detail::uint128_t;
+  static const int exponent_bits = 15;
+};
+
+// A double-double floating point number.
+template <typename T>
+struct float_info<T, enable_if_t<is_double_double<T>::value>> {
+  using carrier_uint = detail::uint128_t;
+};
+
+template <typename T> struct decimal_fp {
+  using significand_type = typename float_info<T>::carrier_uint;
+  significand_type significand;
+  int exponent;
+};
+
+template <typename T> FMT_API auto to_decimal(T x) noexcept -> decimal_fp<T>;
+}  // namespace dragonbox
+
+// Returns true iff Float has the implicit bit which is not stored.
+template <typename Float> constexpr auto has_implicit_bit() -> bool {
+  // An 80-bit FP number has a 64-bit significand an no implicit bit.
+  return std::numeric_limits<Float>::digits != 64;
+}
+
+// Returns the number of significand bits stored in Float. The implicit bit is
+// not counted since it is not stored.
+template <typename Float> constexpr auto num_significand_bits() -> int {
+  // std::numeric_limits may not support __float128.
+  return is_float128<Float>() ? 112
+                              : (std::numeric_limits<Float>::digits -
+                                 (has_implicit_bit<Float>() ? 1 : 0));
+}
+
+template <typename Float>
+constexpr auto exponent_mask() ->
+    typename dragonbox::float_info<Float>::carrier_uint {
+  using float_uint = typename dragonbox::float_info<Float>::carrier_uint;
+  return ((float_uint(1) << dragonbox::float_info<Float>::exponent_bits) - 1)
+         << num_significand_bits<Float>();
+}
+template <typename Float> constexpr auto exponent_bias() -> int {
+  // std::numeric_limits may not support __float128.
+  return is_float128<Float>() ? 16383
+                              : std::numeric_limits<Float>::max_exponent - 1;
+}
+
+// Writes the exponent exp in the form "[+-]d{2,3}" to buffer.
+template <typename Char, typename It>
+FMT_CONSTEXPR auto write_exponent(int exp, It it) -> It {
+  FMT_ASSERT(-10000 < exp && exp < 10000, "exponent out of range");
+  if (exp < 0) {
+    *it++ = static_cast<Char>('-');
+    exp = -exp;
+  } else {
+    *it++ = static_cast<Char>('+');
+  }
+  if (exp >= 100) {
+    const char* top = digits2(to_unsigned(exp / 100));
+    if (exp >= 1000) *it++ = static_cast<Char>(top[0]);
+    *it++ = static_cast<Char>(top[1]);
+    exp %= 100;
+  }
+  const char* d = digits2(to_unsigned(exp));
+  *it++ = static_cast<Char>(d[0]);
+  *it++ = static_cast<Char>(d[1]);
+  return it;
+}
+
+// A floating-point number f * pow(2, e) where F is an unsigned type.
+template <typename F> struct basic_fp {
+  F f;
+  int e;
+
+  static constexpr const int num_significand_bits =
+      static_cast<int>(sizeof(F) * num_bits<unsigned char>());
+
+  constexpr basic_fp() : f(0), e(0) {}
+  constexpr basic_fp(uint64_t f_val, int e_val) : f(f_val), e(e_val) {}
+
+  // Constructs fp from an IEEE754 floating-point number.
+  template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
+
+  // Assigns n to this and return true iff predecessor is closer than successor.
+  template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
+  FMT_CONSTEXPR auto assign(Float n) -> bool {
+    static_assert(std::numeric_limits<Float>::digits <= 113, "unsupported FP");
+    // Assume Float is in the format [sign][exponent][significand].
+    using carrier_uint = typename dragonbox::float_info<Float>::carrier_uint;
+    const auto num_float_significand_bits =
+        detail::num_significand_bits<Float>();
+    const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
+    const auto significand_mask = implicit_bit - 1;
+    auto u = bit_cast<carrier_uint>(n);
+    f = static_cast<F>(u & significand_mask);
+    auto biased_e = static_cast<int>((u & exponent_mask<Float>()) >>
+                                     num_float_significand_bits);
+    // The predecessor is closer if n is a normalized power of 2 (f == 0)
+    // other than the smallest normalized number (biased_e > 1).
+    auto is_predecessor_closer = f == 0 && biased_e > 1;
+    if (biased_e == 0)
+      biased_e = 1;  // Subnormals use biased exponent 1 (min exponent).
+    else if (has_implicit_bit<Float>())
+      f += static_cast<F>(implicit_bit);
+    e = biased_e - exponent_bias<Float>() - num_float_significand_bits;
+    if (!has_implicit_bit<Float>()) ++e;
+    return is_predecessor_closer;
+  }
+
+  template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
+  FMT_CONSTEXPR auto assign(Float n) -> bool {
+    static_assert(std::numeric_limits<double>::is_iec559, "unsupported FP");
+    return assign(static_cast<double>(n));
+  }
+};
+
+using fp = basic_fp<unsigned long long>;
+
+// Normalizes the value converted from double and multiplied by (1 << SHIFT).
+template <int SHIFT = 0, typename F>
+FMT_CONSTEXPR auto normalize(basic_fp<F> value) -> basic_fp<F> {
+  // Handle subnormals.
+  const auto implicit_bit = F(1) << num_significand_bits<double>();
+  const auto shifted_implicit_bit = implicit_bit << SHIFT;
+  while ((value.f & shifted_implicit_bit) == 0) {
+    value.f <<= 1;
+    --value.e;
+  }
+  // Subtract 1 to account for hidden bit.
+  const auto offset = basic_fp<F>::num_significand_bits -
+                      num_significand_bits<double>() - SHIFT - 1;
+  value.f <<= offset;
+  value.e -= offset;
+  return value;
+}
+
+// Computes lhs * rhs / pow(2, 64) rounded to nearest with half-up tie breaking.
+FMT_CONSTEXPR inline auto multiply(uint64_t lhs, uint64_t rhs) -> uint64_t {
+#if FMT_USE_INT128
+  auto product = static_cast<__uint128_t>(lhs) * rhs;
+  auto f = static_cast<uint64_t>(product >> 64);
+  return (static_cast<uint64_t>(product) & (1ULL << 63)) != 0 ? f + 1 : f;
+#else
+  // Multiply 32-bit parts of significands.
+  uint64_t mask = (1ULL << 32) - 1;
+  uint64_t a = lhs >> 32, b = lhs & mask;
+  uint64_t c = rhs >> 32, d = rhs & mask;
+  uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d;
+  // Compute mid 64-bit of result and round.
+  uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31);
+  return ac + (ad >> 32) + (bc >> 32) + (mid >> 32);
+#endif
+}
+
+FMT_CONSTEXPR inline auto operator*(fp x, fp y) -> fp {
+  return {multiply(x.f, y.f), x.e + y.e + 64};
+}
+
+template <typename T, bool doublish = num_bits<T>() == num_bits<double>()>
+using convert_float_result =
+    conditional_t<std::is_same<T, float>::value || doublish, double, T>;
+
+template <typename T>
+constexpr auto convert_float(T value) -> convert_float_result<T> {
+  return static_cast<convert_float_result<T>>(value);
+}
+
+template <typename OutputIt, typename Char>
+FMT_NOINLINE FMT_CONSTEXPR auto fill(OutputIt it, size_t n,
+                                     const fill_t<Char>& fill) -> OutputIt {
+  auto fill_size = fill.size();
+  if (fill_size == 1) return detail::fill_n(it, n, fill[0]);
+  auto data = fill.data();
+  for (size_t i = 0; i < n; ++i)
+    it = copy_str<Char>(data, data + fill_size, it);
+  return it;
+}
+
+// Writes the output of f, padded according to format specifications in specs.
+// size: output size in code units.
+// width: output display width in (terminal) column positions.
+template <align::type align = align::left, typename OutputIt, typename Char,
+          typename F>
+FMT_CONSTEXPR auto write_padded(OutputIt out, const format_specs<Char>& specs,
+                                size_t size, size_t width, F&& f) -> OutputIt {
+  static_assert(align == align::left || align == align::right, "");
+  unsigned spec_width = to_unsigned(specs.width);
+  size_t padding = spec_width > width ? spec_width - width : 0;
+  // Shifts are encoded as string literals because static constexpr is not
+  // supported in constexpr functions.
+  auto* shifts = align == align::left ? "\x1f\x1f\x00\x01" : "\x00\x1f\x00\x01";
+  size_t left_padding = padding >> shifts[specs.align];
+  size_t right_padding = padding - left_padding;
+  auto it = reserve(out, size + padding * specs.fill.size());
+  if (left_padding != 0) it = fill(it, left_padding, specs.fill);
+  it = f(it);
+  if (right_padding != 0) it = fill(it, right_padding, specs.fill);
+  return base_iterator(out, it);
+}
+
+template <align::type align = align::left, typename OutputIt, typename Char,
+          typename F>
+constexpr auto write_padded(OutputIt out, const format_specs<Char>& specs,
+                            size_t size, F&& f) -> OutputIt {
+  return write_padded<align>(out, specs, size, size, f);
+}
+
+template <align::type align = align::left, typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write_bytes(OutputIt out, string_view bytes,
+                               const format_specs<Char>& specs) -> OutputIt {
+  return write_padded<align>(
+      out, specs, bytes.size(), [bytes](reserve_iterator<OutputIt> it) {
+        const char* data = bytes.data();
+        return copy_str<Char>(data, data + bytes.size(), it);
+      });
+}
+
+template <typename Char, typename OutputIt, typename UIntPtr>
+auto write_ptr(OutputIt out, UIntPtr value, const format_specs<Char>* specs)
+    -> OutputIt {
+  int num_digits = count_digits<4>(value);
+  auto size = to_unsigned(num_digits) + size_t(2);
+  auto write = [=](reserve_iterator<OutputIt> it) {
+    *it++ = static_cast<Char>('0');
+    *it++ = static_cast<Char>('x');
+    return format_uint<4, Char>(it, value, num_digits);
+  };
+  return specs ? write_padded<align::right>(out, *specs, size, write)
+               : base_iterator(out, write(reserve(out, size)));
+}
+
+// Returns true iff the code point cp is printable.
+FMT_API auto is_printable(uint32_t cp) -> bool;
+
+inline auto needs_escape(uint32_t cp) -> bool {
+  return cp < 0x20 || cp == 0x7f || cp == '"' || cp == '\\' ||
+         !is_printable(cp);
+}
+
+template <typename Char> struct find_escape_result {
+  const Char* begin;
+  const Char* end;
+  uint32_t cp;
+};
+
+template <typename Char>
+using make_unsigned_char =
+    typename conditional_t<std::is_integral<Char>::value,
+                           std::make_unsigned<Char>,
+                           type_identity<uint32_t>>::type;
+
+template <typename Char>
+auto find_escape(const Char* begin, const Char* end)
+    -> find_escape_result<Char> {
+  for (; begin != end; ++begin) {
+    uint32_t cp = static_cast<make_unsigned_char<Char>>(*begin);
+    if (const_check(sizeof(Char) == 1) && cp >= 0x80) continue;
+    if (needs_escape(cp)) return {begin, begin + 1, cp};
+  }
+  return {begin, nullptr, 0};
+}
+
+inline auto find_escape(const char* begin, const char* end)
+    -> find_escape_result<char> {
+  if (!is_utf8()) return find_escape<char>(begin, end);
+  auto result = find_escape_result<char>{end, nullptr, 0};
+  for_each_codepoint(string_view(begin, to_unsigned(end - begin)),
+                     [&](uint32_t cp, string_view sv) {
+                       if (needs_escape(cp)) {
+                         result = {sv.begin(), sv.end(), cp};
+                         return false;
+                       }
+                       return true;
+                     });
+  return result;
+}
+
+#define FMT_STRING_IMPL(s, base, explicit)                                    \
+  [] {                                                                        \
+    /* Use the hidden visibility as a workaround for a GCC bug (#1973). */    \
+    /* Use a macro-like name to avoid shadowing warnings. */                  \
+    struct FMT_VISIBILITY("hidden") FMT_COMPILE_STRING : base {               \
+      using char_type FMT_MAYBE_UNUSED = fmt::remove_cvref_t<decltype(s[0])>; \
+      FMT_MAYBE_UNUSED FMT_CONSTEXPR explicit                                 \
+      operator fmt::basic_string_view<char_type>() const {                    \
+        return fmt::detail_exported::compile_string_to_view<char_type>(s);    \
+      }                                                                       \
+    };                                                                        \
+    return FMT_COMPILE_STRING();                                              \
+  }()
+
+/**
+  \rst
+  Constructs a compile-time format string from a string literal *s*.
+
+  **Example**::
+
+    // A compile-time error because 'd' is an invalid specifier for strings.
+    std::string s = fmt::format(FMT_STRING("{:d}"), "foo");
+  \endrst
+ */
+#define FMT_STRING(s) FMT_STRING_IMPL(s, fmt::detail::compile_string, )
+
+template <size_t width, typename Char, typename OutputIt>
+auto write_codepoint(OutputIt out, char prefix, uint32_t cp) -> OutputIt {
+  *out++ = static_cast<Char>('\\');
+  *out++ = static_cast<Char>(prefix);
+  Char buf[width];
+  fill_n(buf, width, static_cast<Char>('0'));
+  format_uint<4>(buf, cp, width);
+  return copy_str<Char>(buf, buf + width, out);
+}
+
+template <typename OutputIt, typename Char>
+auto write_escaped_cp(OutputIt out, const find_escape_result<Char>& escape)
+    -> OutputIt {
+  auto c = static_cast<Char>(escape.cp);
+  switch (escape.cp) {
+  case '\n':
+    *out++ = static_cast<Char>('\\');
+    c = static_cast<Char>('n');
+    break;
+  case '\r':
+    *out++ = static_cast<Char>('\\');
+    c = static_cast<Char>('r');
+    break;
+  case '\t':
+    *out++ = static_cast<Char>('\\');
+    c = static_cast<Char>('t');
+    break;
+  case '"':
+    FMT_FALLTHROUGH;
+  case '\'':
+    FMT_FALLTHROUGH;
+  case '\\':
+    *out++ = static_cast<Char>('\\');
+    break;
+  default:
+    if (escape.cp < 0x100) {
+      return write_codepoint<2, Char>(out, 'x', escape.cp);
+    }
+    if (escape.cp < 0x10000) {
+      return write_codepoint<4, Char>(out, 'u', escape.cp);
+    }
+    if (escape.cp < 0x110000) {
+      return write_codepoint<8, Char>(out, 'U', escape.cp);
+    }
+    for (Char escape_char : basic_string_view<Char>(
+             escape.begin, to_unsigned(escape.end - escape.begin))) {
+      out = write_codepoint<2, Char>(out, 'x',
+                                     static_cast<uint32_t>(escape_char) & 0xFF);
+    }
+    return out;
+  }
+  *out++ = c;
+  return out;
+}
+
+template <typename Char, typename OutputIt>
+auto write_escaped_string(OutputIt out, basic_string_view<Char> str)
+    -> OutputIt {
+  *out++ = static_cast<Char>('"');
+  auto begin = str.begin(), end = str.end();
+  do {
+    auto escape = find_escape(begin, end);
+    out = copy_str<Char>(begin, escape.begin, out);
+    begin = escape.end;
+    if (!begin) break;
+    out = write_escaped_cp<OutputIt, Char>(out, escape);
+  } while (begin != end);
+  *out++ = static_cast<Char>('"');
+  return out;
+}
+
+template <typename Char, typename OutputIt>
+auto write_escaped_char(OutputIt out, Char v) -> OutputIt {
+  Char v_array[1] = {v};
+  *out++ = static_cast<Char>('\'');
+  if ((needs_escape(static_cast<uint32_t>(v)) && v != static_cast<Char>('"')) ||
+      v == static_cast<Char>('\'')) {
+    out = write_escaped_cp(out,
+                           find_escape_result<Char>{v_array, v_array + 1,
+                                                    static_cast<uint32_t>(v)});
+  } else {
+    *out++ = v;
+  }
+  *out++ = static_cast<Char>('\'');
+  return out;
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write_char(OutputIt out, Char value,
+                              const format_specs<Char>& specs) -> OutputIt {
+  bool is_debug = specs.type == presentation_type::debug;
+  return write_padded(out, specs, 1, [=](reserve_iterator<OutputIt> it) {
+    if (is_debug) return write_escaped_char(it, value);
+    *it++ = value;
+    return it;
+  });
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, Char value,
+                         const format_specs<Char>& specs, locale_ref loc = {})
+    -> OutputIt {
+  // char is formatted as unsigned char for consistency across platforms.
+  using unsigned_type =
+      conditional_t<std::is_same<Char, char>::value, unsigned char, unsigned>;
+  return check_char_specs(specs)
+             ? write_char(out, value, specs)
+             : write(out, static_cast<unsigned_type>(value), specs, loc);
+}
+
+// Data for write_int that doesn't depend on output iterator type. It is used to
+// avoid template code bloat.
+template <typename Char> struct write_int_data {
+  size_t size;
+  size_t padding;
+
+  FMT_CONSTEXPR write_int_data(int num_digits, unsigned prefix,
+                               const format_specs<Char>& specs)
+      : size((prefix >> 24) + to_unsigned(num_digits)), padding(0) {
+    if (specs.align == align::numeric) {
+      auto width = to_unsigned(specs.width);
+      if (width > size) {
+        padding = width - size;
+        size = width;
+      }
+    } else if (specs.precision > num_digits) {
+      size = (prefix >> 24) + to_unsigned(specs.precision);
+      padding = to_unsigned(specs.precision - num_digits);
+    }
+  }
+};
+
+// Writes an integer in the format
+//   <left-padding><prefix><numeric-padding><digits><right-padding>
+// where <digits> are written by write_digits(it).
+// prefix contains chars in three lower bytes and the size in the fourth byte.
+template <typename OutputIt, typename Char, typename W>
+FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, int num_digits,
+                                        unsigned prefix,
+                                        const format_specs<Char>& specs,
+                                        W write_digits) -> OutputIt {
+  // Slightly faster check for specs.width == 0 && specs.precision == -1.
+  if ((specs.width | (specs.precision + 1)) == 0) {
+    auto it = reserve(out, to_unsigned(num_digits) + (prefix >> 24));
+    if (prefix != 0) {
+      for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
+        *it++ = static_cast<Char>(p & 0xff);
+    }
+    return base_iterator(out, write_digits(it));
+  }
+  auto data = write_int_data<Char>(num_digits, prefix, specs);
+  return write_padded<align::right>(
+      out, specs, data.size, [=](reserve_iterator<OutputIt> it) {
+        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
+          *it++ = static_cast<Char>(p & 0xff);
+        it = detail::fill_n(it, data.padding, static_cast<Char>('0'));
+        return write_digits(it);
+      });
+}
+
+template <typename Char> class digit_grouping {
+ private:
+  std::string grouping_;
+  std::basic_string<Char> thousands_sep_;
+
+  struct next_state {
+    std::string::const_iterator group;
+    int pos;
+  };
+  auto initial_state() const -> next_state { return {grouping_.begin(), 0}; }
+
+  // Returns the next digit group separator position.
+  auto next(next_state& state) const -> int {
+    if (thousands_sep_.empty()) return max_value<int>();
+    if (state.group == grouping_.end()) return state.pos += grouping_.back();
+    if (*state.group <= 0 || *state.group == max_value<char>())
+      return max_value<int>();
+    state.pos += *state.group++;
+    return state.pos;
+  }
+
+ public:
+  explicit digit_grouping(locale_ref loc, bool localized = true) {
+    if (!localized) return;
+    auto sep = thousands_sep<Char>(loc);
+    grouping_ = sep.grouping;
+    if (sep.thousands_sep) thousands_sep_.assign(1, sep.thousands_sep);
+  }
+  digit_grouping(std::string grouping, std::basic_string<Char> sep)
+      : grouping_(std::move(grouping)), thousands_sep_(std::move(sep)) {}
+
+  auto has_separator() const -> bool { return !thousands_sep_.empty(); }
+
+  auto count_separators(int num_digits) const -> int {
+    int count = 0;
+    auto state = initial_state();
+    while (num_digits > next(state)) ++count;
+    return count;
+  }
+
+  // Applies grouping to digits and write the output to out.
+  template <typename Out, typename C>
+  auto apply(Out out, basic_string_view<C> digits) const -> Out {
+    auto num_digits = static_cast<int>(digits.size());
+    auto separators = basic_memory_buffer<int>();
+    separators.push_back(0);
+    auto state = initial_state();
+    while (int i = next(state)) {
+      if (i >= num_digits) break;
+      separators.push_back(i);
+    }
+    for (int i = 0, sep_index = static_cast<int>(separators.size() - 1);
+         i < num_digits; ++i) {
+      if (num_digits - i == separators[sep_index]) {
+        out =
+            copy_str<Char>(thousands_sep_.data(),
+                           thousands_sep_.data() + thousands_sep_.size(), out);
+        --sep_index;
+      }
+      *out++ = static_cast<Char>(digits[to_unsigned(i)]);
+    }
+    return out;
+  }
+};
+
+FMT_CONSTEXPR inline void prefix_append(unsigned& prefix, unsigned value) {
+  prefix |= prefix != 0 ? value << 8 : value;
+  prefix += (1u + (value > 0xff ? 1 : 0)) << 24;
+}
+
+// Writes a decimal integer with digit grouping.
+template <typename OutputIt, typename UInt, typename Char>
+auto write_int(OutputIt out, UInt value, unsigned prefix,
+               const format_specs<Char>& specs,
+               const digit_grouping<Char>& grouping) -> OutputIt {
+  static_assert(std::is_same<uint64_or_128_t<UInt>, UInt>::value, "");
+  int num_digits = 0;
+  auto buffer = memory_buffer();
+  switch (specs.type) {
+  case presentation_type::none:
+  case presentation_type::dec: {
+    num_digits = count_digits(value);
+    format_decimal<char>(appender(buffer), value, num_digits);
+    break;
+  }
+  case presentation_type::hex_lower:
+  case presentation_type::hex_upper: {
+    bool upper = specs.type == presentation_type::hex_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
+    num_digits = count_digits<4>(value);
+    format_uint<4, char>(appender(buffer), value, num_digits, upper);
+    break;
+  }
+  case presentation_type::bin_lower:
+  case presentation_type::bin_upper: {
+    bool upper = specs.type == presentation_type::bin_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
+    num_digits = count_digits<1>(value);
+    format_uint<1, char>(appender(buffer), value, num_digits);
+    break;
+  }
+  case presentation_type::oct: {
+    num_digits = count_digits<3>(value);
+    // Octal prefix '0' is counted as a digit, so only add it if precision
+    // is not greater than the number of digits.
+    if (specs.alt && specs.precision <= num_digits && value != 0)
+      prefix_append(prefix, '0');
+    format_uint<3, char>(appender(buffer), value, num_digits);
+    break;
+  }
+  case presentation_type::chr:
+    return write_char(out, static_cast<Char>(value), specs);
+  default:
+    throw_format_error("invalid format specifier");
+  }
+
+  unsigned size = (prefix != 0 ? prefix >> 24 : 0) + to_unsigned(num_digits) +
+                  to_unsigned(grouping.count_separators(num_digits));
+  return write_padded<align::right>(
+      out, specs, size, size, [&](reserve_iterator<OutputIt> it) {
+        for (unsigned p = prefix & 0xffffff; p != 0; p >>= 8)
+          *it++ = static_cast<Char>(p & 0xff);
+        return grouping.apply(it, string_view(buffer.data(), buffer.size()));
+      });
+}
+
+// Writes a localized value.
+FMT_API auto write_loc(appender out, loc_value value,
+                       const format_specs<>& specs, locale_ref loc) -> bool;
+template <typename OutputIt, typename Char>
+inline auto write_loc(OutputIt, loc_value, const format_specs<Char>&,
+                      locale_ref) -> bool {
+  return false;
+}
+
+template <typename UInt> struct write_int_arg {
+  UInt abs_value;
+  unsigned prefix;
+};
+
+template <typename T>
+FMT_CONSTEXPR auto make_write_int_arg(T value, sign_t sign)
+    -> write_int_arg<uint32_or_64_or_128_t<T>> {
+  auto prefix = 0u;
+  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
+  if (is_negative(value)) {
+    prefix = 0x01000000 | '-';
+    abs_value = 0 - abs_value;
+  } else {
+    constexpr const unsigned prefixes[4] = {0, 0, 0x1000000u | '+',
+                                            0x1000000u | ' '};
+    prefix = prefixes[sign];
+  }
+  return {abs_value, prefix};
+}
+
+template <typename Char = char> struct loc_writer {
+  buffer_appender<Char> out;
+  const format_specs<Char>& specs;
+  std::basic_string<Char> sep;
+  std::string grouping;
+  std::basic_string<Char> decimal_point;
+
+  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
+  auto operator()(T value) -> bool {
+    auto arg = make_write_int_arg(value, specs.sign);
+    write_int(out, static_cast<uint64_or_128_t<T>>(arg.abs_value), arg.prefix,
+              specs, digit_grouping<Char>(grouping, sep));
+    return true;
+  }
+
+  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
+  auto operator()(T) -> bool {
+    return false;
+  }
+};
+
+template <typename Char, typename OutputIt, typename T>
+FMT_CONSTEXPR FMT_INLINE auto write_int(OutputIt out, write_int_arg<T> arg,
+                                        const format_specs<Char>& specs,
+                                        locale_ref) -> OutputIt {
+  static_assert(std::is_same<T, uint32_or_64_or_128_t<T>>::value, "");
+  auto abs_value = arg.abs_value;
+  auto prefix = arg.prefix;
+  switch (specs.type) {
+  case presentation_type::none:
+  case presentation_type::dec: {
+    auto num_digits = count_digits(abs_value);
+    return write_int(
+        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
+          return format_decimal<Char>(it, abs_value, num_digits).end;
+        });
+  }
+  case presentation_type::hex_lower:
+  case presentation_type::hex_upper: {
+    bool upper = specs.type == presentation_type::hex_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'X' : 'x') << 8 | '0');
+    int num_digits = count_digits<4>(abs_value);
+    return write_int(
+        out, num_digits, prefix, specs, [=](reserve_iterator<OutputIt> it) {
+          return format_uint<4, Char>(it, abs_value, num_digits, upper);
+        });
+  }
+  case presentation_type::bin_lower:
+  case presentation_type::bin_upper: {
+    bool upper = specs.type == presentation_type::bin_upper;
+    if (specs.alt)
+      prefix_append(prefix, unsigned(upper ? 'B' : 'b') << 8 | '0');
+    int num_digits = count_digits<1>(abs_value);
+    return write_int(out, num_digits, prefix, specs,
+                     [=](reserve_iterator<OutputIt> it) {
+                       return format_uint<1, Char>(it, abs_value, num_digits);
+                     });
+  }
+  case presentation_type::oct: {
+    int num_digits = count_digits<3>(abs_value);
+    // Octal prefix '0' is counted as a digit, so only add it if precision
+    // is not greater than the number of digits.
+    if (specs.alt && specs.precision <= num_digits && abs_value != 0)
+      prefix_append(prefix, '0');
+    return write_int(out, num_digits, prefix, specs,
+                     [=](reserve_iterator<OutputIt> it) {
+                       return format_uint<3, Char>(it, abs_value, num_digits);
+                     });
+  }
+  case presentation_type::chr:
+    return write_char(out, static_cast<Char>(abs_value), specs);
+  default:
+    throw_format_error("invalid format specifier");
+  }
+  return out;
+}
+template <typename Char, typename OutputIt, typename T>
+FMT_CONSTEXPR FMT_NOINLINE auto write_int_noinline(
+    OutputIt out, write_int_arg<T> arg, const format_specs<Char>& specs,
+    locale_ref loc) -> OutputIt {
+  return write_int(out, arg, specs, loc);
+}
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        std::is_same<OutputIt, buffer_appender<Char>>::value)>
+FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
+                                    const format_specs<Char>& specs,
+                                    locale_ref loc) -> OutputIt {
+  if (specs.localized && write_loc(out, value, specs, loc)) return out;
+  return write_int_noinline(out, make_write_int_arg(value, specs.sign), specs,
+                            loc);
+}
+// An inlined version of write used in format string compilation.
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        !std::is_same<OutputIt, buffer_appender<Char>>::value)>
+FMT_CONSTEXPR FMT_INLINE auto write(OutputIt out, T value,
+                                    const format_specs<Char>& specs,
+                                    locale_ref loc) -> OutputIt {
+  if (specs.localized && write_loc(out, value, specs, loc)) return out;
+  return write_int(out, make_write_int_arg(value, specs.sign), specs, loc);
+}
+
+// An output iterator that counts the number of objects written to it and
+// discards them.
+class counting_iterator {
+ private:
+  size_t count_;
+
+ public:
+  using iterator_category = std::output_iterator_tag;
+  using difference_type = std::ptrdiff_t;
+  using pointer = void;
+  using reference = void;
+  FMT_UNCHECKED_ITERATOR(counting_iterator);
+
+  struct value_type {
+    template <typename T> FMT_CONSTEXPR void operator=(const T&) {}
+  };
+
+  FMT_CONSTEXPR counting_iterator() : count_(0) {}
+
+  FMT_CONSTEXPR auto count() const -> size_t { return count_; }
+
+  FMT_CONSTEXPR auto operator++() -> counting_iterator& {
+    ++count_;
+    return *this;
+  }
+  FMT_CONSTEXPR auto operator++(int) -> counting_iterator {
+    auto it = *this;
+    ++*this;
+    return it;
+  }
+
+  FMT_CONSTEXPR friend auto operator+(counting_iterator it, difference_type n)
+      -> counting_iterator {
+    it.count_ += static_cast<size_t>(n);
+    return it;
+  }
+
+  FMT_CONSTEXPR auto operator*() const -> value_type { return {}; }
+};
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> s,
+                         const format_specs<Char>& specs) -> OutputIt {
+  auto data = s.data();
+  auto size = s.size();
+  if (specs.precision >= 0 && to_unsigned(specs.precision) < size)
+    size = code_point_index(s, to_unsigned(specs.precision));
+  bool is_debug = specs.type == presentation_type::debug;
+  size_t width = 0;
+  if (specs.width != 0) {
+    if (is_debug)
+      width = write_escaped_string(counting_iterator{}, s).count();
+    else
+      width = compute_width(basic_string_view<Char>(data, size));
+  }
+  return write_padded(out, specs, size, width,
+                      [=](reserve_iterator<OutputIt> it) {
+                        if (is_debug) return write_escaped_string(it, s);
+                        return copy_str<Char>(data, data + size, it);
+                      });
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out,
+                         basic_string_view<type_identity_t<Char>> s,
+                         const format_specs<Char>& specs, locale_ref)
+    -> OutputIt {
+  return write(out, s, specs);
+}
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, const Char* s,
+                         const format_specs<Char>& specs, locale_ref)
+    -> OutputIt {
+  if (specs.type == presentation_type::pointer)
+    return write_ptr<Char>(out, bit_cast<uintptr_t>(s), &specs);
+  if (!s) throw_format_error("string pointer is null");
+  return write(out, basic_string_view<Char>(s), specs, {});
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_integral<T>::value &&
+                        !std::is_same<T, bool>::value &&
+                        !std::is_same<T, Char>::value)>
+FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
+  auto abs_value = static_cast<uint32_or_64_or_128_t<T>>(value);
+  bool negative = is_negative(value);
+  // Don't do -abs_value since it trips unsigned-integer-overflow sanitizer.
+  if (negative) abs_value = ~abs_value + 1;
+  int num_digits = count_digits(abs_value);
+  auto size = (negative ? 1 : 0) + static_cast<size_t>(num_digits);
+  auto it = reserve(out, size);
+  if (auto ptr = to_pointer<Char>(it, size)) {
+    if (negative) *ptr++ = static_cast<Char>('-');
+    format_decimal<Char>(ptr, abs_value, num_digits);
+    return out;
+  }
+  if (negative) *it++ = static_cast<Char>('-');
+  it = format_decimal<Char>(it, abs_value, num_digits).end;
+  return base_iterator(out, it);
+}
+
+// DEPRECATED!
+template <typename Char>
+FMT_CONSTEXPR auto parse_align(const Char* begin, const Char* end,
+                               format_specs<Char>& specs) -> const Char* {
+  FMT_ASSERT(begin != end, "");
+  auto align = align::none;
+  auto p = begin + code_point_length(begin);
+  if (end - p <= 0) p = begin;
+  for (;;) {
+    switch (to_ascii(*p)) {
+    case '<':
+      align = align::left;
+      break;
+    case '>':
+      align = align::right;
+      break;
+    case '^':
+      align = align::center;
+      break;
+    }
+    if (align != align::none) {
+      if (p != begin) {
+        auto c = *begin;
+        if (c == '}') return begin;
+        if (c == '{') {
+          throw_format_error("invalid fill character '{'");
+          return begin;
+        }
+        specs.fill = {begin, to_unsigned(p - begin)};
+        begin = p + 1;
+      } else {
+        ++begin;
+      }
+      break;
+    } else if (p == begin) {
+      break;
+    }
+    p = begin;
+  }
+  specs.align = align;
+  return begin;
+}
+
+// A floating-point presentation format.
+enum class float_format : unsigned char {
+  general,  // General: exponent notation or fixed point based on magnitude.
+  exp,      // Exponent notation with the default precision of 6, e.g. 1.2e-3.
+  fixed,    // Fixed point with the default precision of 6, e.g. 0.0012.
+  hex
+};
+
+struct float_specs {
+  int precision;
+  float_format format : 8;
+  sign_t sign : 8;
+  bool upper : 1;
+  bool locale : 1;
+  bool binary32 : 1;
+  bool showpoint : 1;
+};
+
+template <typename Char>
+FMT_CONSTEXPR auto parse_float_type_spec(const format_specs<Char>& specs)
+    -> float_specs {
+  auto result = float_specs();
+  result.showpoint = specs.alt;
+  result.locale = specs.localized;
+  switch (specs.type) {
+  case presentation_type::none:
+    result.format = float_format::general;
+    break;
+  case presentation_type::general_upper:
+    result.upper = true;
+    FMT_FALLTHROUGH;
+  case presentation_type::general_lower:
+    result.format = float_format::general;
+    break;
+  case presentation_type::exp_upper:
+    result.upper = true;
+    FMT_FALLTHROUGH;
+  case presentation_type::exp_lower:
+    result.format = float_format::exp;
+    result.showpoint |= specs.precision != 0;
+    break;
+  case presentation_type::fixed_upper:
+    result.upper = true;
+    FMT_FALLTHROUGH;
+  case presentation_type::fixed_lower:
+    result.format = float_format::fixed;
+    result.showpoint |= specs.precision != 0;
+    break;
+  case presentation_type::hexfloat_upper:
+    result.upper = true;
+    FMT_FALLTHROUGH;
+  case presentation_type::hexfloat_lower:
+    result.format = float_format::hex;
+    break;
+  default:
+    throw_format_error("invalid format specifier");
+    break;
+  }
+  return result;
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR20 auto write_nonfinite(OutputIt out, bool isnan,
+                                     format_specs<Char> specs,
+                                     const float_specs& fspecs) -> OutputIt {
+  auto str =
+      isnan ? (fspecs.upper ? "NAN" : "nan") : (fspecs.upper ? "INF" : "inf");
+  constexpr size_t str_size = 3;
+  auto sign = fspecs.sign;
+  auto size = str_size + (sign ? 1 : 0);
+  // Replace '0'-padding with space for non-finite values.
+  const bool is_zero_fill =
+      specs.fill.size() == 1 && *specs.fill.data() == static_cast<Char>('0');
+  if (is_zero_fill) specs.fill[0] = static_cast<Char>(' ');
+  return write_padded(out, specs, size, [=](reserve_iterator<OutputIt> it) {
+    if (sign) *it++ = detail::sign<Char>(sign);
+    return copy_str<Char>(str, str + str_size, it);
+  });
+}
+
+// A decimal floating-point number significand * pow(10, exp).
+struct big_decimal_fp {
+  const char* significand;
+  int significand_size;
+  int exponent;
+};
+
+constexpr auto get_significand_size(const big_decimal_fp& f) -> int {
+  return f.significand_size;
+}
+template <typename T>
+inline auto get_significand_size(const dragonbox::decimal_fp<T>& f) -> int {
+  return count_digits(f.significand);
+}
+
+template <typename Char, typename OutputIt>
+constexpr auto write_significand(OutputIt out, const char* significand,
+                                 int significand_size) -> OutputIt {
+  return copy_str<Char>(significand, significand + significand_size, out);
+}
+template <typename Char, typename OutputIt, typename UInt>
+inline auto write_significand(OutputIt out, UInt significand,
+                              int significand_size) -> OutputIt {
+  return format_decimal<Char>(out, significand, significand_size).end;
+}
+template <typename Char, typename OutputIt, typename T, typename Grouping>
+FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
+                                       int significand_size, int exponent,
+                                       const Grouping& grouping) -> OutputIt {
+  if (!grouping.has_separator()) {
+    out = write_significand<Char>(out, significand, significand_size);
+    return detail::fill_n(out, exponent, static_cast<Char>('0'));
+  }
+  auto buffer = memory_buffer();
+  write_significand<char>(appender(buffer), significand, significand_size);
+  detail::fill_n(appender(buffer), exponent, '0');
+  return grouping.apply(out, string_view(buffer.data(), buffer.size()));
+}
+
+template <typename Char, typename UInt,
+          FMT_ENABLE_IF(std::is_integral<UInt>::value)>
+inline auto write_significand(Char* out, UInt significand, int significand_size,
+                              int integral_size, Char decimal_point) -> Char* {
+  if (!decimal_point)
+    return format_decimal(out, significand, significand_size).end;
+  out += significand_size + 1;
+  Char* end = out;
+  int floating_size = significand_size - integral_size;
+  for (int i = floating_size / 2; i > 0; --i) {
+    out -= 2;
+    copy2(out, digits2(static_cast<std::size_t>(significand % 100)));
+    significand /= 100;
+  }
+  if (floating_size % 2 != 0) {
+    *--out = static_cast<Char>('0' + significand % 10);
+    significand /= 10;
+  }
+  *--out = decimal_point;
+  format_decimal(out - integral_size, significand, integral_size);
+  return end;
+}
+
+template <typename OutputIt, typename UInt, typename Char,
+          FMT_ENABLE_IF(!std::is_pointer<remove_cvref_t<OutputIt>>::value)>
+inline auto write_significand(OutputIt out, UInt significand,
+                              int significand_size, int integral_size,
+                              Char decimal_point) -> OutputIt {
+  // Buffer is large enough to hold digits (digits10 + 1) and a decimal point.
+  Char buffer[digits10<UInt>() + 2];
+  auto end = write_significand(buffer, significand, significand_size,
+                               integral_size, decimal_point);
+  return detail::copy_str_noinline<Char>(buffer, end, out);
+}
+
+template <typename OutputIt, typename Char>
+FMT_CONSTEXPR auto write_significand(OutputIt out, const char* significand,
+                                     int significand_size, int integral_size,
+                                     Char decimal_point) -> OutputIt {
+  out = detail::copy_str_noinline<Char>(significand,
+                                        significand + integral_size, out);
+  if (!decimal_point) return out;
+  *out++ = decimal_point;
+  return detail::copy_str_noinline<Char>(significand + integral_size,
+                                         significand + significand_size, out);
+}
+
+template <typename OutputIt, typename Char, typename T, typename Grouping>
+FMT_CONSTEXPR20 auto write_significand(OutputIt out, T significand,
+                                       int significand_size, int integral_size,
+                                       Char decimal_point,
+                                       const Grouping& grouping) -> OutputIt {
+  if (!grouping.has_separator()) {
+    return write_significand(out, significand, significand_size, integral_size,
+                             decimal_point);
+  }
+  auto buffer = basic_memory_buffer<Char>();
+  write_significand(buffer_appender<Char>(buffer), significand,
+                    significand_size, integral_size, decimal_point);
+  grouping.apply(
+      out, basic_string_view<Char>(buffer.data(), to_unsigned(integral_size)));
+  return detail::copy_str_noinline<Char>(buffer.data() + integral_size,
+                                         buffer.end(), out);
+}
+
+template <typename OutputIt, typename DecimalFP, typename Char,
+          typename Grouping = digit_grouping<Char>>
+FMT_CONSTEXPR20 auto do_write_float(OutputIt out, const DecimalFP& f,
+                                    const format_specs<Char>& specs,
+                                    float_specs fspecs, locale_ref loc)
+    -> OutputIt {
+  auto significand = f.significand;
+  int significand_size = get_significand_size(f);
+  const Char zero = static_cast<Char>('0');
+  auto sign = fspecs.sign;
+  size_t size = to_unsigned(significand_size) + (sign ? 1 : 0);
+  using iterator = reserve_iterator<OutputIt>;
+
+  Char decimal_point =
+      fspecs.locale ? detail::decimal_point<Char>(loc) : static_cast<Char>('.');
+
+  int output_exp = f.exponent + significand_size - 1;
+  auto use_exp_format = [=]() {
+    if (fspecs.format == float_format::exp) return true;
+    if (fspecs.format != float_format::general) return false;
+    // Use the fixed notation if the exponent is in [exp_lower, exp_upper),
+    // e.g. 0.0001 instead of 1e-04. Otherwise use the exponent notation.
+    const int exp_lower = -4, exp_upper = 16;
+    return output_exp < exp_lower ||
+           output_exp >= (fspecs.precision > 0 ? fspecs.precision : exp_upper);
+  };
+  if (use_exp_format()) {
+    int num_zeros = 0;
+    if (fspecs.showpoint) {
+      num_zeros = fspecs.precision - significand_size;
+      if (num_zeros < 0) num_zeros = 0;
+      size += to_unsigned(num_zeros);
+    } else if (significand_size == 1) {
+      decimal_point = Char();
+    }
+    auto abs_output_exp = output_exp >= 0 ? output_exp : -output_exp;
+    int exp_digits = 2;
+    if (abs_output_exp >= 100) exp_digits = abs_output_exp >= 1000 ? 4 : 3;
+
+    size += to_unsigned((decimal_point ? 1 : 0) + 2 + exp_digits);
+    char exp_char = fspecs.upper ? 'E' : 'e';
+    auto write = [=](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      // Insert a decimal point after the first digit and add an exponent.
+      it = write_significand(it, significand, significand_size, 1,
+                             decimal_point);
+      if (num_zeros > 0) it = detail::fill_n(it, num_zeros, zero);
+      *it++ = static_cast<Char>(exp_char);
+      return write_exponent<Char>(output_exp, it);
+    };
+    return specs.width > 0 ? write_padded<align::right>(out, specs, size, write)
+                           : base_iterator(out, write(reserve(out, size)));
+  }
+
+  int exp = f.exponent + significand_size;
+  if (f.exponent >= 0) {
+    // 1234e5 -> 123400000[.0+]
+    size += to_unsigned(f.exponent);
+    int num_zeros = fspecs.precision - exp;
+    abort_fuzzing_if(num_zeros > 5000);
+    if (fspecs.showpoint) {
+      ++size;
+      if (num_zeros <= 0 && fspecs.format != float_format::fixed) num_zeros = 0;
+      if (num_zeros > 0) size += to_unsigned(num_zeros);
+    }
+    auto grouping = Grouping(loc, fspecs.locale);
+    size += to_unsigned(grouping.count_separators(exp));
+    return write_padded<align::right>(out, specs, size, [&](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      it = write_significand<Char>(it, significand, significand_size,
+                                   f.exponent, grouping);
+      if (!fspecs.showpoint) return it;
+      *it++ = decimal_point;
+      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
+    });
+  } else if (exp > 0) {
+    // 1234e-2 -> 12.34[0+]
+    int num_zeros = fspecs.showpoint ? fspecs.precision - significand_size : 0;
+    size += 1 + to_unsigned(num_zeros > 0 ? num_zeros : 0);
+    auto grouping = Grouping(loc, fspecs.locale);
+    size += to_unsigned(grouping.count_separators(exp));
+    return write_padded<align::right>(out, specs, size, [&](iterator it) {
+      if (sign) *it++ = detail::sign<Char>(sign);
+      it = write_significand(it, significand, significand_size, exp,
+                             decimal_point, grouping);
+      return num_zeros > 0 ? detail::fill_n(it, num_zeros, zero) : it;
+    });
+  }
+  // 1234e-6 -> 0.001234
+  int num_zeros = -exp;
+  if (significand_size == 0 && fspecs.precision >= 0 &&
+      fspecs.precision < num_zeros) {
+    num_zeros = fspecs.precision;
+  }
+  bool pointy = num_zeros != 0 || significand_size != 0 || fspecs.showpoint;
+  size += 1 + (pointy ? 1 : 0) + to_unsigned(num_zeros);
+  return write_padded<align::right>(out, specs, size, [&](iterator it) {
+    if (sign) *it++ = detail::sign<Char>(sign);
+    *it++ = zero;
+    if (!pointy) return it;
+    *it++ = decimal_point;
+    it = detail::fill_n(it, num_zeros, zero);
+    return write_significand<Char>(it, significand, significand_size);
+  });
+}
+
+template <typename Char> class fallback_digit_grouping {
+ public:
+  constexpr fallback_digit_grouping(locale_ref, bool) {}
+
+  constexpr auto has_separator() const -> bool { return false; }
+
+  constexpr auto count_separators(int) const -> int { return 0; }
+
+  template <typename Out, typename C>
+  constexpr auto apply(Out out, basic_string_view<C>) const -> Out {
+    return out;
+  }
+};
+
+template <typename OutputIt, typename DecimalFP, typename Char>
+FMT_CONSTEXPR20 auto write_float(OutputIt out, const DecimalFP& f,
+                                 const format_specs<Char>& specs,
+                                 float_specs fspecs, locale_ref loc)
+    -> OutputIt {
+  if (is_constant_evaluated()) {
+    return do_write_float<OutputIt, DecimalFP, Char,
+                          fallback_digit_grouping<Char>>(out, f, specs, fspecs,
+                                                         loc);
+  } else {
+    return do_write_float(out, f, specs, fspecs, loc);
+  }
+}
+
+template <typename T> constexpr auto isnan(T value) -> bool {
+  return !(value >= value);  // std::isnan doesn't support __float128.
+}
+
+template <typename T, typename Enable = void>
+struct has_isfinite : std::false_type {};
+
+template <typename T>
+struct has_isfinite<T, enable_if_t<sizeof(std::isfinite(T())) != 0>>
+    : std::true_type {};
+
+template <typename T, FMT_ENABLE_IF(std::is_floating_point<T>::value&&
+                                        has_isfinite<T>::value)>
+FMT_CONSTEXPR20 auto isfinite(T value) -> bool {
+  constexpr T inf = T(std::numeric_limits<double>::infinity());
+  if (is_constant_evaluated())
+    return !detail::isnan(value) && value < inf && value > -inf;
+  return std::isfinite(value);
+}
+template <typename T, FMT_ENABLE_IF(!has_isfinite<T>::value)>
+FMT_CONSTEXPR auto isfinite(T value) -> bool {
+  T inf = T(std::numeric_limits<double>::infinity());
+  // std::isfinite doesn't support __float128.
+  return !detail::isnan(value) && value < inf && value > -inf;
+}
+
+template <typename T, FMT_ENABLE_IF(is_floating_point<T>::value)>
+FMT_INLINE FMT_CONSTEXPR bool signbit(T value) {
+  if (is_constant_evaluated()) {
+#ifdef __cpp_if_constexpr
+    if constexpr (std::numeric_limits<double>::is_iec559) {
+      auto bits = detail::bit_cast<uint64_t>(static_cast<double>(value));
+      return (bits >> (num_bits<uint64_t>() - 1)) != 0;
+    }
+#endif
+  }
+  return std::signbit(static_cast<double>(value));
+}
+
+inline FMT_CONSTEXPR20 void adjust_precision(int& precision, int exp10) {
+  // Adjust fixed precision by exponent because it is relative to decimal
+  // point.
+  if (exp10 > 0 && precision > max_value<int>() - exp10)
+    FMT_THROW(format_error("number is too big"));
+  precision += exp10;
+}
+
+class bigint {
+ private:
+  // A bigint is stored as an array of bigits (big digits), with bigit at index
+  // 0 being the least significant one.
+  using bigit = uint32_t;
+  using double_bigit = uint64_t;
+  enum { bigits_capacity = 32 };
+  basic_memory_buffer<bigit, bigits_capacity> bigits_;
+  int exp_;
+
+  FMT_CONSTEXPR20 auto operator[](int index) const -> bigit {
+    return bigits_[to_unsigned(index)];
+  }
+  FMT_CONSTEXPR20 auto operator[](int index) -> bigit& {
+    return bigits_[to_unsigned(index)];
+  }
+
+  static constexpr const int bigit_bits = num_bits<bigit>();
+
+  friend struct formatter<bigint>;
+
+  FMT_CONSTEXPR20 void subtract_bigits(int index, bigit other, bigit& borrow) {
+    auto result = static_cast<double_bigit>((*this)[index]) - other - borrow;
+    (*this)[index] = static_cast<bigit>(result);
+    borrow = static_cast<bigit>(result >> (bigit_bits * 2 - 1));
+  }
+
+  FMT_CONSTEXPR20 void remove_leading_zeros() {
+    int num_bigits = static_cast<int>(bigits_.size()) - 1;
+    while (num_bigits > 0 && (*this)[num_bigits] == 0) --num_bigits;
+    bigits_.resize(to_unsigned(num_bigits + 1));
+  }
+
+  // Computes *this -= other assuming aligned bigints and *this >= other.
+  FMT_CONSTEXPR20 void subtract_aligned(const bigint& other) {
+    FMT_ASSERT(other.exp_ >= exp_, "unaligned bigints");
+    FMT_ASSERT(compare(*this, other) >= 0, "");
+    bigit borrow = 0;
+    int i = other.exp_ - exp_;
+    for (size_t j = 0, n = other.bigits_.size(); j != n; ++i, ++j)
+      subtract_bigits(i, other.bigits_[j], borrow);
+    while (borrow > 0) subtract_bigits(i, 0, borrow);
+    remove_leading_zeros();
+  }
+
+  FMT_CONSTEXPR20 void multiply(uint32_t value) {
+    const double_bigit wide_value = value;
+    bigit carry = 0;
+    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+      double_bigit result = bigits_[i] * wide_value + carry;
+      bigits_[i] = static_cast<bigit>(result);
+      carry = static_cast<bigit>(result >> bigit_bits);
+    }
+    if (carry != 0) bigits_.push_back(carry);
+  }
+
+  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
+                                         std::is_same<UInt, uint128_t>::value)>
+  FMT_CONSTEXPR20 void multiply(UInt value) {
+    using half_uint =
+        conditional_t<std::is_same<UInt, uint128_t>::value, uint64_t, uint32_t>;
+    const int shift = num_bits<half_uint>() - bigit_bits;
+    const UInt lower = static_cast<half_uint>(value);
+    const UInt upper = value >> num_bits<half_uint>();
+    UInt carry = 0;
+    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+      UInt result = lower * bigits_[i] + static_cast<bigit>(carry);
+      carry = (upper * bigits_[i] << shift) + (result >> bigit_bits) +
+              (carry >> bigit_bits);
+      bigits_[i] = static_cast<bigit>(result);
+    }
+    while (carry != 0) {
+      bigits_.push_back(static_cast<bigit>(carry));
+      carry >>= bigit_bits;
+    }
+  }
+
+  template <typename UInt, FMT_ENABLE_IF(std::is_same<UInt, uint64_t>::value ||
+                                         std::is_same<UInt, uint128_t>::value)>
+  FMT_CONSTEXPR20 void assign(UInt n) {
+    size_t num_bigits = 0;
+    do {
+      bigits_[num_bigits++] = static_cast<bigit>(n);
+      n >>= bigit_bits;
+    } while (n != 0);
+    bigits_.resize(num_bigits);
+    exp_ = 0;
+  }
+
+ public:
+  FMT_CONSTEXPR20 bigint() : exp_(0) {}
+  explicit bigint(uint64_t n) { assign(n); }
+
+  bigint(const bigint&) = delete;
+  void operator=(const bigint&) = delete;
+
+  FMT_CONSTEXPR20 void assign(const bigint& other) {
+    auto size = other.bigits_.size();
+    bigits_.resize(size);
+    auto data = other.bigits_.data();
+    copy_str<bigit>(data, data + size, bigits_.data());
+    exp_ = other.exp_;
+  }
+
+  template <typename Int> FMT_CONSTEXPR20 void operator=(Int n) {
+    FMT_ASSERT(n > 0, "");
+    assign(uint64_or_128_t<Int>(n));
+  }
+
+  FMT_CONSTEXPR20 auto num_bigits() const -> int {
+    return static_cast<int>(bigits_.size()) + exp_;
+  }
+
+  FMT_NOINLINE FMT_CONSTEXPR20 auto operator<<=(int shift) -> bigint& {
+    FMT_ASSERT(shift >= 0, "");
+    exp_ += shift / bigit_bits;
+    shift %= bigit_bits;
+    if (shift == 0) return *this;
+    bigit carry = 0;
+    for (size_t i = 0, n = bigits_.size(); i < n; ++i) {
+      bigit c = bigits_[i] >> (bigit_bits - shift);
+      bigits_[i] = (bigits_[i] << shift) + carry;
+      carry = c;
+    }
+    if (carry != 0) bigits_.push_back(carry);
+    return *this;
+  }
+
+  template <typename Int>
+  FMT_CONSTEXPR20 auto operator*=(Int value) -> bigint& {
+    FMT_ASSERT(value > 0, "");
+    multiply(uint32_or_64_or_128_t<Int>(value));
+    return *this;
+  }
+
+  friend FMT_CONSTEXPR20 auto compare(const bigint& lhs, const bigint& rhs)
+      -> int {
+    int num_lhs_bigits = lhs.num_bigits(), num_rhs_bigits = rhs.num_bigits();
+    if (num_lhs_bigits != num_rhs_bigits)
+      return num_lhs_bigits > num_rhs_bigits ? 1 : -1;
+    int i = static_cast<int>(lhs.bigits_.size()) - 1;
+    int j = static_cast<int>(rhs.bigits_.size()) - 1;
+    int end = i - j;
+    if (end < 0) end = 0;
+    for (; i >= end; --i, --j) {
+      bigit lhs_bigit = lhs[i], rhs_bigit = rhs[j];
+      if (lhs_bigit != rhs_bigit) return lhs_bigit > rhs_bigit ? 1 : -1;
+    }
+    if (i != j) return i > j ? 1 : -1;
+    return 0;
+  }
+
+  // Returns compare(lhs1 + lhs2, rhs).
+  friend FMT_CONSTEXPR20 auto add_compare(const bigint& lhs1,
+                                          const bigint& lhs2, const bigint& rhs)
+      -> int {
+    auto minimum = [](int a, int b) { return a < b ? a : b; };
+    auto maximum = [](int a, int b) { return a > b ? a : b; };
+    int max_lhs_bigits = maximum(lhs1.num_bigits(), lhs2.num_bigits());
+    int num_rhs_bigits = rhs.num_bigits();
+    if (max_lhs_bigits + 1 < num_rhs_bigits) return -1;
+    if (max_lhs_bigits > num_rhs_bigits) return 1;
+    auto get_bigit = [](const bigint& n, int i) -> bigit {
+      return i >= n.exp_ && i < n.num_bigits() ? n[i - n.exp_] : 0;
+    };
+    double_bigit borrow = 0;
+    int min_exp = minimum(minimum(lhs1.exp_, lhs2.exp_), rhs.exp_);
+    for (int i = num_rhs_bigits - 1; i >= min_exp; --i) {
+      double_bigit sum =
+          static_cast<double_bigit>(get_bigit(lhs1, i)) + get_bigit(lhs2, i);
+      bigit rhs_bigit = get_bigit(rhs, i);
+      if (sum > rhs_bigit + borrow) return 1;
+      borrow = rhs_bigit + borrow - sum;
+      if (borrow > 1) return -1;
+      borrow <<= bigit_bits;
+    }
+    return borrow != 0 ? -1 : 0;
+  }
+
+  // Assigns pow(10, exp) to this bigint.
+  FMT_CONSTEXPR20 void assign_pow10(int exp) {
+    FMT_ASSERT(exp >= 0, "");
+    if (exp == 0) return *this = 1;
+    // Find the top bit.
+    int bitmask = 1;
+    while (exp >= bitmask) bitmask <<= 1;
+    bitmask >>= 1;
+    // pow(10, exp) = pow(5, exp) * pow(2, exp). First compute pow(5, exp) by
+    // repeated squaring and multiplication.
+    *this = 5;
+    bitmask >>= 1;
+    while (bitmask != 0) {
+      square();
+      if ((exp & bitmask) != 0) *this *= 5;
+      bitmask >>= 1;
+    }
+    *this <<= exp;  // Multiply by pow(2, exp) by shifting.
+  }
+
+  FMT_CONSTEXPR20 void square() {
+    int num_bigits = static_cast<int>(bigits_.size());
+    int num_result_bigits = 2 * num_bigits;
+    basic_memory_buffer<bigit, bigits_capacity> n(std::move(bigits_));
+    bigits_.resize(to_unsigned(num_result_bigits));
+    auto sum = uint128_t();
+    for (int bigit_index = 0; bigit_index < num_bigits; ++bigit_index) {
+      // Compute bigit at position bigit_index of the result by adding
+      // cross-product terms n[i] * n[j] such that i + j == bigit_index.
+      for (int i = 0, j = bigit_index; j >= 0; ++i, --j) {
+        // Most terms are multiplied twice which can be optimized in the future.
+        sum += static_cast<double_bigit>(n[i]) * n[j];
+      }
+      (*this)[bigit_index] = static_cast<bigit>(sum);
+      sum >>= num_bits<bigit>();  // Compute the carry.
+    }
+    // Do the same for the top half.
+    for (int bigit_index = num_bigits; bigit_index < num_result_bigits;
+         ++bigit_index) {
+      for (int j = num_bigits - 1, i = bigit_index - j; i < num_bigits;)
+        sum += static_cast<double_bigit>(n[i++]) * n[j--];
+      (*this)[bigit_index] = static_cast<bigit>(sum);
+      sum >>= num_bits<bigit>();
+    }
+    remove_leading_zeros();
+    exp_ *= 2;
+  }
+
+  // If this bigint has a bigger exponent than other, adds trailing zero to make
+  // exponents equal. This simplifies some operations such as subtraction.
+  FMT_CONSTEXPR20 void align(const bigint& other) {
+    int exp_difference = exp_ - other.exp_;
+    if (exp_difference <= 0) return;
+    int num_bigits = static_cast<int>(bigits_.size());
+    bigits_.resize(to_unsigned(num_bigits + exp_difference));
+    for (int i = num_bigits - 1, j = i + exp_difference; i >= 0; --i, --j)
+      bigits_[j] = bigits_[i];
+    std::uninitialized_fill_n(bigits_.data(), exp_difference, 0u);
+    exp_ -= exp_difference;
+  }
+
+  // Divides this bignum by divisor, assigning the remainder to this and
+  // returning the quotient.
+  FMT_CONSTEXPR20 auto divmod_assign(const bigint& divisor) -> int {
+    FMT_ASSERT(this != &divisor, "");
+    if (compare(*this, divisor) < 0) return 0;
+    FMT_ASSERT(divisor.bigits_[divisor.bigits_.size() - 1u] != 0, "");
+    align(divisor);
+    int quotient = 0;
+    do {
+      subtract_aligned(divisor);
+      ++quotient;
+    } while (compare(*this, divisor) >= 0);
+    return quotient;
+  }
+};
+
+// format_dragon flags.
+enum dragon {
+  predecessor_closer = 1,
+  fixup = 2,  // Run fixup to correct exp10 which can be off by one.
+  fixed = 4,
+};
+
+// Formats a floating-point number using a variation of the Fixed-Precision
+// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
+// https://fmt.dev/papers/p372-steele.pdf.
+FMT_CONSTEXPR20 inline void format_dragon(basic_fp<uint128_t> value,
+                                          unsigned flags, int num_digits,
+                                          buffer<char>& buf, int& exp10) {
+  bigint numerator;    // 2 * R in (FPP)^2.
+  bigint denominator;  // 2 * S in (FPP)^2.
+  // lower and upper are differences between value and corresponding boundaries.
+  bigint lower;             // (M^- in (FPP)^2).
+  bigint upper_store;       // upper's value if different from lower.
+  bigint* upper = nullptr;  // (M^+ in (FPP)^2).
+  // Shift numerator and denominator by an extra bit or two (if lower boundary
+  // is closer) to make lower and upper integers. This eliminates multiplication
+  // by 2 during later computations.
+  bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
+  int shift = is_predecessor_closer ? 2 : 1;
+  if (value.e >= 0) {
+    numerator = value.f;
+    numerator <<= value.e + shift;
+    lower = 1;
+    lower <<= value.e;
+    if (is_predecessor_closer) {
+      upper_store = 1;
+      upper_store <<= value.e + 1;
+      upper = &upper_store;
+    }
+    denominator.assign_pow10(exp10);
+    denominator <<= shift;
+  } else if (exp10 < 0) {
+    numerator.assign_pow10(-exp10);
+    lower.assign(numerator);
+    if (is_predecessor_closer) {
+      upper_store.assign(numerator);
+      upper_store <<= 1;
+      upper = &upper_store;
+    }
+    numerator *= value.f;
+    numerator <<= shift;
+    denominator = 1;
+    denominator <<= shift - value.e;
+  } else {
+    numerator = value.f;
+    numerator <<= shift;
+    denominator.assign_pow10(exp10);
+    denominator <<= shift - value.e;
+    lower = 1;
+    if (is_predecessor_closer) {
+      upper_store = 1ULL << 1;
+      upper = &upper_store;
+    }
+  }
+  int even = static_cast<int>((value.f & 1) == 0);
+  if (!upper) upper = &lower;
+  bool shortest = num_digits < 0;
+  if ((flags & dragon::fixup) != 0) {
+    if (add_compare(numerator, *upper, denominator) + even <= 0) {
+      --exp10;
+      numerator *= 10;
+      if (num_digits < 0) {
+        lower *= 10;
+        if (upper != &lower) *upper *= 10;
+      }
+    }
+    if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
+  }
+  // Invariant: value == (numerator / denominator) * pow(10, exp10).
+  if (shortest) {
+    // Generate the shortest representation.
+    num_digits = 0;
+    char* data = buf.data();
+    for (;;) {
+      int digit = numerator.divmod_assign(denominator);
+      bool low = compare(numerator, lower) - even < 0;  // numerator <[=] lower.
+      // numerator + upper >[=] pow10:
+      bool high = add_compare(numerator, *upper, denominator) + even > 0;
+      data[num_digits++] = static_cast<char>('0' + digit);
+      if (low || high) {
+        if (!low) {
+          ++data[num_digits - 1];
+        } else if (high) {
+          int result = add_compare(numerator, numerator, denominator);
+          // Round half to even.
+          if (result > 0 || (result == 0 && (digit % 2) != 0))
+            ++data[num_digits - 1];
+        }
+        buf.try_resize(to_unsigned(num_digits));
+        exp10 -= num_digits - 1;
+        return;
+      }
+      numerator *= 10;
+      lower *= 10;
+      if (upper != &lower) *upper *= 10;
+    }
+  }
+  // Generate the given number of digits.
+  exp10 -= num_digits - 1;
+  if (num_digits <= 0) {
+    denominator *= 10;
+    auto digit = add_compare(numerator, numerator, denominator) > 0 ? '1' : '0';
+    buf.push_back(digit);
+    return;
+  }
+  buf.try_resize(to_unsigned(num_digits));
+  for (int i = 0; i < num_digits - 1; ++i) {
+    int digit = numerator.divmod_assign(denominator);
+    buf[i] = static_cast<char>('0' + digit);
+    numerator *= 10;
+  }
+  int digit = numerator.divmod_assign(denominator);
+  auto result = add_compare(numerator, numerator, denominator);
+  if (result > 0 || (result == 0 && (digit % 2) != 0)) {
+    if (digit == 9) {
+      const auto overflow = '0' + 10;
+      buf[num_digits - 1] = overflow;
+      // Propagate the carry.
+      for (int i = num_digits - 1; i > 0 && buf[i] == overflow; --i) {
+        buf[i] = '0';
+        ++buf[i - 1];
+      }
+      if (buf[0] == overflow) {
+        buf[0] = '1';
+        if ((flags & dragon::fixed) != 0)
+          buf.push_back('0');
+        else
+          ++exp10;
+      }
+      return;
+    }
+    ++digit;
+  }
+  buf[num_digits - 1] = static_cast<char>('0' + digit);
+}
+
+// Formats a floating-point number using the hexfloat format.
+template <typename Float, FMT_ENABLE_IF(!is_double_double<Float>::value)>
+FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
+                                     float_specs specs, buffer<char>& buf) {
+  // float is passed as double to reduce the number of instantiations and to
+  // simplify implementation.
+  static_assert(!std::is_same<Float, float>::value, "");
+
+  using info = dragonbox::float_info<Float>;
+
+  // Assume Float is in the format [sign][exponent][significand].
+  using carrier_uint = typename info::carrier_uint;
+
+  constexpr auto num_float_significand_bits =
+      detail::num_significand_bits<Float>();
+
+  basic_fp<carrier_uint> f(value);
+  f.e += num_float_significand_bits;
+  if (!has_implicit_bit<Float>()) --f.e;
+
+  constexpr auto num_fraction_bits =
+      num_float_significand_bits + (has_implicit_bit<Float>() ? 1 : 0);
+  constexpr auto num_xdigits = (num_fraction_bits + 3) / 4;
+
+  constexpr auto leading_shift = ((num_xdigits - 1) * 4);
+  const auto leading_mask = carrier_uint(0xF) << leading_shift;
+  const auto leading_xdigit =
+      static_cast<uint32_t>((f.f & leading_mask) >> leading_shift);
+  if (leading_xdigit > 1) f.e -= (32 - countl_zero(leading_xdigit) - 1);
+
+  int print_xdigits = num_xdigits - 1;
+  if (precision >= 0 && print_xdigits > precision) {
+    const int shift = ((print_xdigits - precision - 1) * 4);
+    const auto mask = carrier_uint(0xF) << shift;
+    const auto v = static_cast<uint32_t>((f.f & mask) >> shift);
+
+    if (v >= 8) {
+      const auto inc = carrier_uint(1) << (shift + 4);
+      f.f += inc;
+      f.f &= ~(inc - 1);
+    }
+
+    // Check long double overflow
+    if (!has_implicit_bit<Float>()) {
+      const auto implicit_bit = carrier_uint(1) << num_float_significand_bits;
+      if ((f.f & implicit_bit) == implicit_bit) {
+        f.f >>= 4;
+        f.e += 4;
+      }
+    }
+
+    print_xdigits = precision;
+  }
+
+  char xdigits[num_bits<carrier_uint>() / 4];
+  detail::fill_n(xdigits, sizeof(xdigits), '0');
+  format_uint<4>(xdigits, f.f, num_xdigits, specs.upper);
+
+  // Remove zero tail
+  while (print_xdigits > 0 && xdigits[print_xdigits] == '0') --print_xdigits;
+
+  buf.push_back('0');
+  buf.push_back(specs.upper ? 'X' : 'x');
+  buf.push_back(xdigits[0]);
+  if (specs.showpoint || print_xdigits > 0 || print_xdigits < precision)
+    buf.push_back('.');
+  buf.append(xdigits + 1, xdigits + 1 + print_xdigits);
+  for (; print_xdigits < precision; ++print_xdigits) buf.push_back('0');
+
+  buf.push_back(specs.upper ? 'P' : 'p');
+
+  uint32_t abs_e;
+  if (f.e < 0) {
+    buf.push_back('-');
+    abs_e = static_cast<uint32_t>(-f.e);
+  } else {
+    buf.push_back('+');
+    abs_e = static_cast<uint32_t>(f.e);
+  }
+  format_decimal<char>(appender(buf), abs_e, detail::count_digits(abs_e));
+}
+
+template <typename Float, FMT_ENABLE_IF(is_double_double<Float>::value)>
+FMT_CONSTEXPR20 void format_hexfloat(Float value, int precision,
+                                     float_specs specs, buffer<char>& buf) {
+  format_hexfloat(static_cast<double>(value), precision, specs, buf);
+}
+
+constexpr auto fractional_part_rounding_thresholds(int index) -> uint32_t {
+  // For checking rounding thresholds.
+  // The kth entry is chosen to be the smallest integer such that the
+  // upper 32-bits of 10^(k+1) times it is strictly bigger than 5 * 10^k.
+  // It is equal to ceil(2^31 + 2^32/10^(k + 1)).
+  // These are stored in a string literal because we cannot have static arrays
+  // in constexpr functions and non-static ones are poorly optimized.
+  return U"\x9999999a\x828f5c29\x80418938\x80068db9\x8000a7c6\x800010c7"
+         U"\x800001ae\x8000002b"[index];
+}
+
+template <typename Float>
+FMT_CONSTEXPR20 auto format_float(Float value, int precision, float_specs specs,
+                                  buffer<char>& buf) -> int {
+  // float is passed as double to reduce the number of instantiations.
+  static_assert(!std::is_same<Float, float>::value, "");
+  FMT_ASSERT(value >= 0, "value is negative");
+  auto converted_value = convert_float(value);
+
+  const bool fixed = specs.format == float_format::fixed;
+  if (value <= 0) {  // <= instead of == to silence a warning.
+    if (precision <= 0 || !fixed) {
+      buf.push_back('0');
+      return 0;
+    }
+    buf.try_resize(to_unsigned(precision));
+    fill_n(buf.data(), precision, '0');
+    return -precision;
+  }
+
+  int exp = 0;
+  bool use_dragon = true;
+  unsigned dragon_flags = 0;
+  if (!is_fast_float<Float>() || is_constant_evaluated()) {
+    const auto inv_log2_10 = 0.3010299956639812;  // 1 / log2(10)
+    using info = dragonbox::float_info<decltype(converted_value)>;
+    const auto f = basic_fp<typename info::carrier_uint>(converted_value);
+    // Compute exp, an approximate power of 10, such that
+    //   10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
+    // This is based on log10(value) == log2(value) / log2(10) and approximation
+    // of log2(value) by e + num_fraction_bits idea from double-conversion.
+    auto e = (f.e + count_digits<1>(f.f) - 1) * inv_log2_10 - 1e-10;
+    exp = static_cast<int>(e);
+    if (e > exp) ++exp;  // Compute ceil.
+    dragon_flags = dragon::fixup;
+  } else if (precision < 0) {
+    // Use Dragonbox for the shortest format.
+    if (specs.binary32) {
+      auto dec = dragonbox::to_decimal(static_cast<float>(value));
+      write<char>(buffer_appender<char>(buf), dec.significand);
+      return dec.exponent;
+    }
+    auto dec = dragonbox::to_decimal(static_cast<double>(value));
+    write<char>(buffer_appender<char>(buf), dec.significand);
+    return dec.exponent;
+  } else {
+    // Extract significand bits and exponent bits.
+    using info = dragonbox::float_info<double>;
+    auto br = bit_cast<uint64_t>(static_cast<double>(value));
+
+    const uint64_t significand_mask =
+        (static_cast<uint64_t>(1) << num_significand_bits<double>()) - 1;
+    uint64_t significand = (br & significand_mask);
+    int exponent = static_cast<int>((br & exponent_mask<double>()) >>
+                                    num_significand_bits<double>());
+
+    if (exponent != 0) {  // Check if normal.
+      exponent -= exponent_bias<double>() + num_significand_bits<double>();
+      significand |=
+          (static_cast<uint64_t>(1) << num_significand_bits<double>());
+      significand <<= 1;
+    } else {
+      // Normalize subnormal inputs.
+      FMT_ASSERT(significand != 0, "zeros should not appear here");
+      int shift = countl_zero(significand);
+      FMT_ASSERT(shift >= num_bits<uint64_t>() - num_significand_bits<double>(),
+                 "");
+      shift -= (num_bits<uint64_t>() - num_significand_bits<double>() - 2);
+      exponent = (std::numeric_limits<double>::min_exponent -
+                  num_significand_bits<double>()) -
+                 shift;
+      significand <<= shift;
+    }
+
+    // Compute the first several nonzero decimal significand digits.
+    // We call the number we get the first segment.
+    const int k = info::kappa - dragonbox::floor_log10_pow2(exponent);
+    exp = -k;
+    const int beta = exponent + dragonbox::floor_log2_pow10(k);
+    uint64_t first_segment;
+    bool has_more_segments;
+    int digits_in_the_first_segment;
+    {
+      const auto r = dragonbox::umul192_upper128(
+          significand << beta, dragonbox::get_cached_power(k));
+      first_segment = r.high();
+      has_more_segments = r.low() != 0;
+
+      // The first segment can have 18 ~ 19 digits.
+      if (first_segment >= 1000000000000000000ULL) {
+        digits_in_the_first_segment = 19;
+      } else {
+        // When it is of 18-digits, we align it to 19-digits by adding a bogus
+        // zero at the end.
+        digits_in_the_first_segment = 18;
+        first_segment *= 10;
+      }
+    }
+
+    // Compute the actual number of decimal digits to print.
+    if (fixed) adjust_precision(precision, exp + digits_in_the_first_segment);
+
+    // Use Dragon4 only when there might be not enough digits in the first
+    // segment.
+    if (digits_in_the_first_segment > precision) {
+      use_dragon = false;
+
+      if (precision <= 0) {
+        exp += digits_in_the_first_segment;
+
+        if (precision < 0) {
+          // Nothing to do, since all we have are just leading zeros.
+          buf.try_resize(0);
+        } else {
+          // We may need to round-up.
+          buf.try_resize(1);
+          if ((first_segment | static_cast<uint64_t>(has_more_segments)) >
+              5000000000000000000ULL) {
+            buf[0] = '1';
+          } else {
+            buf[0] = '0';
+          }
+        }
+      }  // precision <= 0
+      else {
+        exp += digits_in_the_first_segment - precision;
+
+        // When precision > 0, we divide the first segment into three
+        // subsegments, each with 9, 9, and 0 ~ 1 digits so that each fits
+        // in 32-bits which usually allows faster calculation than in
+        // 64-bits. Since some compiler (e.g. MSVC) doesn't know how to optimize
+        // division-by-constant for large 64-bit divisors, we do it here
+        // manually. The magic number 7922816251426433760 below is equal to
+        // ceil(2^(64+32) / 10^10).
+        const uint32_t first_subsegment = static_cast<uint32_t>(
+            dragonbox::umul128_upper64(first_segment, 7922816251426433760ULL) >>
+            32);
+        const uint64_t second_third_subsegments =
+            first_segment - first_subsegment * 10000000000ULL;
+
+        uint64_t prod;
+        uint32_t digits;
+        bool should_round_up;
+        int number_of_digits_to_print = precision > 9 ? 9 : precision;
+
+        // Print a 9-digits subsegment, either the first or the second.
+        auto print_subsegment = [&](uint32_t subsegment, char* buffer) {
+          int number_of_digits_printed = 0;
+
+          // If we want to print an odd number of digits from the subsegment,
+          if ((number_of_digits_to_print & 1) != 0) {
+            // Convert to 64-bit fixed-point fractional form with 1-digit
+            // integer part. The magic number 720575941 is a good enough
+            // approximation of 2^(32 + 24) / 10^8; see
+            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
+            // for details.
+            prod = ((subsegment * static_cast<uint64_t>(720575941)) >> 24) + 1;
+            digits = static_cast<uint32_t>(prod >> 32);
+            *buffer = static_cast<char>('0' + digits);
+            number_of_digits_printed++;
+          }
+          // If we want to print an even number of digits from the
+          // first_subsegment,
+          else {
+            // Convert to 64-bit fixed-point fractional form with 2-digits
+            // integer part. The magic number 450359963 is a good enough
+            // approximation of 2^(32 + 20) / 10^7; see
+            // https://jk-jeon.github.io/posts/2022/12/fixed-precision-formatting/#fixed-length-case
+            // for details.
+            prod = ((subsegment * static_cast<uint64_t>(450359963)) >> 20) + 1;
+            digits = static_cast<uint32_t>(prod >> 32);
+            copy2(buffer, digits2(digits));
+            number_of_digits_printed += 2;
+          }
+
+          // Print all digit pairs.
+          while (number_of_digits_printed < number_of_digits_to_print) {
+            prod = static_cast<uint32_t>(prod) * static_cast<uint64_t>(100);
+            digits = static_cast<uint32_t>(prod >> 32);
+            copy2(buffer + number_of_digits_printed, digits2(digits));
+            number_of_digits_printed += 2;
+          }
+        };
+
+        // Print first subsegment.
+        print_subsegment(first_subsegment, buf.data());
+
+        // Perform rounding if the first subsegment is the last subsegment to
+        // print.
+        if (precision <= 9) {
+          // Rounding inside the subsegment.
+          // We round-up if:
+          //  - either the fractional part is strictly larger than 1/2, or
+          //  - the fractional part is exactly 1/2 and the last digit is odd.
+          // We rely on the following observations:
+          //  - If fractional_part >= threshold, then the fractional part is
+          //    strictly larger than 1/2.
+          //  - If the MSB of fractional_part is set, then the fractional part
+          //    must be at least 1/2.
+          //  - When the MSB of fractional_part is set, either
+          //    second_third_subsegments being nonzero or has_more_segments
+          //    being true means there are further digits not printed, so the
+          //    fractional part is strictly larger than 1/2.
+          if (precision < 9) {
+            uint32_t fractional_part = static_cast<uint32_t>(prod);
+            should_round_up =
+                fractional_part >= fractional_part_rounding_thresholds(
+                                       8 - number_of_digits_to_print) ||
+                ((fractional_part >> 31) &
+                 ((digits & 1) | (second_third_subsegments != 0) |
+                  has_more_segments)) != 0;
+          }
+          // Rounding at the subsegment boundary.
+          // In this case, the fractional part is at least 1/2 if and only if
+          // second_third_subsegments >= 5000000000ULL, and is strictly larger
+          // than 1/2 if we further have either second_third_subsegments >
+          // 5000000000ULL or has_more_segments == true.
+          else {
+            should_round_up = second_third_subsegments > 5000000000ULL ||
+                              (second_third_subsegments == 5000000000ULL &&
+                               ((digits & 1) != 0 || has_more_segments));
+          }
+        }
+        // Otherwise, print the second subsegment.
+        else {
+          // Compilers are not aware of how to leverage the maximum value of
+          // second_third_subsegments to find out a better magic number which
+          // allows us to eliminate an additional shift. 1844674407370955162 =
+          // ceil(2^64/10) < ceil(2^64*(10^9/(10^10 - 1))).
+          const uint32_t second_subsegment =
+              static_cast<uint32_t>(dragonbox::umul128_upper64(
+                  second_third_subsegments, 1844674407370955162ULL));
+          const uint32_t third_subsegment =
+              static_cast<uint32_t>(second_third_subsegments) -
+              second_subsegment * 10;
+
+          number_of_digits_to_print = precision - 9;
+          print_subsegment(second_subsegment, buf.data() + 9);
+
+          // Rounding inside the subsegment.
+          if (precision < 18) {
+            // The condition third_subsegment != 0 implies that the segment was
+            // of 19 digits, so in this case the third segment should be
+            // consisting of a genuine digit from the input.
+            uint32_t fractional_part = static_cast<uint32_t>(prod);
+            should_round_up =
+                fractional_part >= fractional_part_rounding_thresholds(
+                                       8 - number_of_digits_to_print) ||
+                ((fractional_part >> 31) &
+                 ((digits & 1) | (third_subsegment != 0) |
+                  has_more_segments)) != 0;
+          }
+          // Rounding at the subsegment boundary.
+          else {
+            // In this case, the segment must be of 19 digits, thus
+            // the third subsegment should be consisting of a genuine digit from
+            // the input.
+            should_round_up = third_subsegment > 5 ||
+                              (third_subsegment == 5 &&
+                               ((digits & 1) != 0 || has_more_segments));
+          }
+        }
+
+        // Round-up if necessary.
+        if (should_round_up) {
+          ++buf[precision - 1];
+          for (int i = precision - 1; i > 0 && buf[i] > '9'; --i) {
+            buf[i] = '0';
+            ++buf[i - 1];
+          }
+          if (buf[0] > '9') {
+            buf[0] = '1';
+            if (fixed)
+              buf[precision++] = '0';
+            else
+              ++exp;
+          }
+        }
+        buf.try_resize(to_unsigned(precision));
+      }
+    }  // if (digits_in_the_first_segment > precision)
+    else {
+      // Adjust the exponent for its use in Dragon4.
+      exp += digits_in_the_first_segment - 1;
+    }
+  }
+  if (use_dragon) {
+    auto f = basic_fp<uint128_t>();
+    bool is_predecessor_closer = specs.binary32
+                                     ? f.assign(static_cast<float>(value))
+                                     : f.assign(converted_value);
+    if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
+    if (fixed) dragon_flags |= dragon::fixed;
+    // Limit precision to the maximum possible number of significant digits in
+    // an IEEE754 double because we don't need to generate zeros.
+    const int max_double_digits = 767;
+    if (precision > max_double_digits) precision = max_double_digits;
+    format_dragon(f, dragon_flags, precision, buf, exp);
+  }
+  if (!fixed && !specs.showpoint) {
+    // Remove trailing zeros.
+    auto num_digits = buf.size();
+    while (num_digits > 0 && buf[num_digits - 1] == '0') {
+      --num_digits;
+      ++exp;
+    }
+    buf.try_resize(num_digits);
+  }
+  return exp;
+}
+template <typename Char, typename OutputIt, typename T>
+FMT_CONSTEXPR20 auto write_float(OutputIt out, T value,
+                                 format_specs<Char> specs, locale_ref loc)
+    -> OutputIt {
+  float_specs fspecs = parse_float_type_spec(specs);
+  fspecs.sign = specs.sign;
+  if (detail::signbit(value)) {  // value < 0 is false for NaN so use signbit.
+    fspecs.sign = sign::minus;
+    value = -value;
+  } else if (fspecs.sign == sign::minus) {
+    fspecs.sign = sign::none;
+  }
+
+  if (!detail::isfinite(value))
+    return write_nonfinite(out, detail::isnan(value), specs, fspecs);
+
+  if (specs.align == align::numeric && fspecs.sign) {
+    auto it = reserve(out, 1);
+    *it++ = detail::sign<Char>(fspecs.sign);
+    out = base_iterator(out, it);
+    fspecs.sign = sign::none;
+    if (specs.width != 0) --specs.width;
+  }
+
+  memory_buffer buffer;
+  if (fspecs.format == float_format::hex) {
+    if (fspecs.sign) buffer.push_back(detail::sign<char>(fspecs.sign));
+    format_hexfloat(convert_float(value), specs.precision, fspecs, buffer);
+    return write_bytes<align::right>(out, {buffer.data(), buffer.size()},
+                                     specs);
+  }
+  int precision = specs.precision >= 0 || specs.type == presentation_type::none
+                      ? specs.precision
+                      : 6;
+  if (fspecs.format == float_format::exp) {
+    if (precision == max_value<int>())
+      throw_format_error("number is too big");
+    else
+      ++precision;
+  } else if (fspecs.format != float_format::fixed && precision == 0) {
+    precision = 1;
+  }
+  if (const_check(std::is_same<T, float>())) fspecs.binary32 = true;
+  int exp = format_float(convert_float(value), precision, fspecs, buffer);
+  fspecs.precision = precision;
+  auto f = big_decimal_fp{buffer.data(), static_cast<int>(buffer.size()), exp};
+  return write_float(out, f, specs, fspecs, loc);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_floating_point<T>::value)>
+FMT_CONSTEXPR20 auto write(OutputIt out, T value, format_specs<Char> specs,
+                           locale_ref loc = {}) -> OutputIt {
+  if (const_check(!is_supported_floating_point(value))) return out;
+  return specs.localized && write_loc(out, value, specs, loc)
+             ? out
+             : write_float(out, value, specs, loc);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_fast_float<T>::value)>
+FMT_CONSTEXPR20 auto write(OutputIt out, T value) -> OutputIt {
+  if (is_constant_evaluated()) return write(out, value, format_specs<Char>());
+  if (const_check(!is_supported_floating_point(value))) return out;
+
+  auto fspecs = float_specs();
+  if (detail::signbit(value)) {
+    fspecs.sign = sign::minus;
+    value = -value;
+  }
+
+  constexpr auto specs = format_specs<Char>();
+  using floaty = conditional_t<std::is_same<T, long double>::value, double, T>;
+  using floaty_uint = typename dragonbox::float_info<floaty>::carrier_uint;
+  floaty_uint mask = exponent_mask<floaty>();
+  if ((bit_cast<floaty_uint>(value) & mask) == mask)
+    return write_nonfinite(out, std::isnan(value), specs, fspecs);
+
+  auto dec = dragonbox::to_decimal(static_cast<floaty>(value));
+  return write_float(out, dec, specs, fspecs, {});
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_floating_point<T>::value &&
+                        !is_fast_float<T>::value)>
+inline auto write(OutputIt out, T value) -> OutputIt {
+  return write(out, value, format_specs<Char>());
+}
+
+template <typename Char, typename OutputIt>
+auto write(OutputIt out, monostate, format_specs<Char> = {}, locale_ref = {})
+    -> OutputIt {
+  FMT_ASSERT(false, "");
+  return out;
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, basic_string_view<Char> value)
+    -> OutputIt {
+  auto it = reserve(out, value.size());
+  it = copy_str_noinline<Char>(value.begin(), value.end(), it);
+  return base_iterator(out, it);
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(is_string<T>::value)>
+constexpr auto write(OutputIt out, const T& value) -> OutputIt {
+  return write<Char>(out, to_string_view(value));
+}
+
+// FMT_ENABLE_IF() condition separated to workaround an MSVC bug.
+template <
+    typename Char, typename OutputIt, typename T,
+    bool check =
+        std::is_enum<T>::value && !std::is_same<T, Char>::value &&
+        mapped_type_constant<T, basic_format_context<OutputIt, Char>>::value !=
+            type::custom_type,
+    FMT_ENABLE_IF(check)>
+FMT_CONSTEXPR auto write(OutputIt out, T value) -> OutputIt {
+  return write<Char>(out, static_cast<underlying_t<T>>(value));
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_same<T, bool>::value)>
+FMT_CONSTEXPR auto write(OutputIt out, T value,
+                         const format_specs<Char>& specs = {}, locale_ref = {})
+    -> OutputIt {
+  return specs.type != presentation_type::none &&
+                 specs.type != presentation_type::string
+             ? write(out, value ? 1 : 0, specs, {})
+             : write_bytes(out, value ? "true" : "false", specs);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR auto write(OutputIt out, Char value) -> OutputIt {
+  auto it = reserve(out, 1);
+  *it++ = value;
+  return base_iterator(out, it);
+}
+
+template <typename Char, typename OutputIt>
+FMT_CONSTEXPR_CHAR_TRAITS auto write(OutputIt out, const Char* value)
+    -> OutputIt {
+  if (value) return write(out, basic_string_view<Char>(value));
+  throw_format_error("string pointer is null");
+  return out;
+}
+
+template <typename Char, typename OutputIt, typename T,
+          FMT_ENABLE_IF(std::is_same<T, void>::value)>
+auto write(OutputIt out, const T* value, const format_specs<Char>& specs = {},
+           locale_ref = {}) -> OutputIt {
+  return write_ptr<Char>(out, bit_cast<uintptr_t>(value), &specs);
+}
+
+// A write overload that handles implicit conversions.
+template <typename Char, typename OutputIt, typename T,
+          typename Context = basic_format_context<OutputIt, Char>>
+FMT_CONSTEXPR auto write(OutputIt out, const T& value) -> enable_if_t<
+    std::is_class<T>::value && !is_string<T>::value &&
+        !is_floating_point<T>::value && !std::is_same<T, Char>::value &&
+        !std::is_same<T, remove_cvref_t<decltype(arg_mapper<Context>().map(
+                             value))>>::value,
+    OutputIt> {
+  return write<Char>(out, arg_mapper<Context>().map(value));
+}
+
+template <typename Char, typename OutputIt, typename T,
+          typename Context = basic_format_context<OutputIt, Char>>
+FMT_CONSTEXPR auto write(OutputIt out, const T& value)
+    -> enable_if_t<mapped_type_constant<T, Context>::value == type::custom_type,
+                   OutputIt> {
+  auto formatter = typename Context::template formatter_type<T>();
+  auto parse_ctx = typename Context::parse_context_type({});
+  formatter.parse(parse_ctx);
+  auto ctx = Context(out, {}, {});
+  return formatter.format(value, ctx);
+}
+
+// An argument visitor that formats the argument and writes it via the output
+// iterator. It's a class and not a generic lambda for compatibility with C++11.
+template <typename Char> struct default_arg_formatter {
+  using iterator = buffer_appender<Char>;
+  using context = buffer_context<Char>;
+
+  iterator out;
+  basic_format_args<context> args;
+  locale_ref loc;
+
+  template <typename T> auto operator()(T value) -> iterator {
+    return write<Char>(out, value);
+  }
+  auto operator()(typename basic_format_arg<context>::handle h) -> iterator {
+    basic_format_parse_context<Char> parse_ctx({});
+    context format_ctx(out, args, loc);
+    h.format(parse_ctx, format_ctx);
+    return format_ctx.out();
+  }
+};
+
+template <typename Char> struct arg_formatter {
+  using iterator = buffer_appender<Char>;
+  using context = buffer_context<Char>;
+
+  iterator out;
+  const format_specs<Char>& specs;
+  locale_ref locale;
+
+  template <typename T>
+  FMT_CONSTEXPR FMT_INLINE auto operator()(T value) -> iterator {
+    return detail::write(out, value, specs, locale);
+  }
+  auto operator()(typename basic_format_arg<context>::handle) -> iterator {
+    // User-defined types are handled separately because they require access
+    // to the parse context.
+    return out;
+  }
+};
+
+struct width_checker {
+  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
+    if (is_negative(value)) throw_format_error("negative width");
+    return static_cast<unsigned long long>(value);
+  }
+
+  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
+    throw_format_error("width is not integer");
+    return 0;
+  }
+};
+
+struct precision_checker {
+  template <typename T, FMT_ENABLE_IF(is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T value) -> unsigned long long {
+    if (is_negative(value)) throw_format_error("negative precision");
+    return static_cast<unsigned long long>(value);
+  }
+
+  template <typename T, FMT_ENABLE_IF(!is_integer<T>::value)>
+  FMT_CONSTEXPR auto operator()(T) -> unsigned long long {
+    throw_format_error("precision is not integer");
+    return 0;
+  }
+};
+
+template <typename Handler, typename FormatArg>
+FMT_CONSTEXPR auto get_dynamic_spec(FormatArg arg) -> int {
+  unsigned long long value = visit_format_arg(Handler(), arg);
+  if (value > to_unsigned(max_value<int>()))
+    throw_format_error("number is too big");
+  return static_cast<int>(value);
+}
+
+template <typename Context, typename ID>
+FMT_CONSTEXPR auto get_arg(Context& ctx, ID id) -> decltype(ctx.arg(id)) {
+  auto arg = ctx.arg(id);
+  if (!arg) ctx.on_error("argument not found");
+  return arg;
+}
+
+template <typename Handler, typename Context>
+FMT_CONSTEXPR void handle_dynamic_spec(int& value,
+                                       arg_ref<typename Context::char_type> ref,
+                                       Context& ctx) {
+  switch (ref.kind) {
+  case arg_id_kind::none:
+    break;
+  case arg_id_kind::index:
+    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.index));
+    break;
+  case arg_id_kind::name:
+    value = detail::get_dynamic_spec<Handler>(get_arg(ctx, ref.val.name));
+    break;
+  }
+}
+
+#if FMT_USE_USER_DEFINED_LITERALS
+#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct statically_named_arg : view {
+  static constexpr auto name = Str.data;
+
+  const T& value;
+  statically_named_arg(const T& v) : value(v) {}
+};
+
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct is_named_arg<statically_named_arg<T, Char, N, Str>> : std::true_type {};
+
+template <typename T, typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct is_statically_named_arg<statically_named_arg<T, Char, N, Str>>
+    : std::true_type {};
+
+template <typename Char, size_t N,
+          fmt::detail_exported::fixed_string<Char, N> Str>
+struct udl_arg {
+  template <typename T> auto operator=(T&& value) const {
+    return statically_named_arg<T, Char, N, Str>(std::forward<T>(value));
+  }
+};
+#  else
+template <typename Char> struct udl_arg {
+  const Char* str;
+
+  template <typename T> auto operator=(T&& value) const -> named_arg<Char, T> {
+    return {str, std::forward<T>(value)};
+  }
+};
+#  endif
+#endif  // FMT_USE_USER_DEFINED_LITERALS
+
+template <typename Locale, typename Char>
+auto vformat(const Locale& loc, basic_string_view<Char> fmt,
+             basic_format_args<buffer_context<type_identity_t<Char>>> args)
+    -> std::basic_string<Char> {
+  auto buf = basic_memory_buffer<Char>();
+  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
+  return {buf.data(), buf.size()};
+}
+
+using format_func = void (*)(detail::buffer<char>&, int, const char*);
+
+FMT_API void format_error_code(buffer<char>& out, int error_code,
+                               string_view message) noexcept;
+
+FMT_API void report_error(format_func func, int error_code,
+                          const char* message) noexcept;
+}  // namespace detail
+
+FMT_API auto vsystem_error(int error_code, string_view format_str,
+                           format_args args) -> std::system_error;
+
+/**
+  \rst
+  Constructs :class:`std::system_error` with a message formatted with
+  ``fmt::format(fmt, args...)``.
+  *error_code* is a system error code as given by ``errno``.
+
+  **Example**::
+
+    // This throws std::system_error with the description
+    //   cannot open file 'madeup': No such file or directory
+    // or similar (system message may vary).
+    const char* filename = "madeup";
+    std::FILE* file = std::fopen(filename, "r");
+    if (!file)
+      throw fmt::system_error(errno, "cannot open file '{}'", filename);
+  \endrst
+ */
+template <typename... T>
+auto system_error(int error_code, format_string<T...> fmt, T&&... args)
+    -> std::system_error {
+  return vsystem_error(error_code, fmt, fmt::make_format_args(args...));
+}
+
+/**
+  \rst
+  Formats an error message for an error returned by an operating system or a
+  language runtime, for example a file opening error, and writes it to *out*.
+  The format is the same as the one used by ``std::system_error(ec, message)``
+  where ``ec`` is ``std::error_code(error_code, std::generic_category()})``.
+  It is implementation-defined but normally looks like:
+
+  .. parsed-literal::
+     *<message>*: *<system-message>*
+
+  where *<message>* is the passed message and *<system-message>* is the system
+  message corresponding to the error code.
+  *error_code* is a system error code as given by ``errno``.
+  \endrst
+ */
+FMT_API void format_system_error(detail::buffer<char>& out, int error_code,
+                                 const char* message) noexcept;
+
+// Reports a system error without throwing an exception.
+// Can be used to report errors from destructors.
+FMT_API void report_system_error(int error_code, const char* message) noexcept;
+
+/** Fast integer formatter. */
+class format_int {
+ private:
+  // Buffer should be large enough to hold all digits (digits10 + 1),
+  // a sign and a null character.
+  enum { buffer_size = std::numeric_limits<unsigned long long>::digits10 + 3 };
+  mutable char buffer_[buffer_size];
+  char* str_;
+
+  template <typename UInt> auto format_unsigned(UInt value) -> char* {
+    auto n = static_cast<detail::uint32_or_64_or_128_t<UInt>>(value);
+    return detail::format_decimal(buffer_, n, buffer_size - 1).begin;
+  }
+
+  template <typename Int> auto format_signed(Int value) -> char* {
+    auto abs_value = static_cast<detail::uint32_or_64_or_128_t<Int>>(value);
+    bool negative = value < 0;
+    if (negative) abs_value = 0 - abs_value;
+    auto begin = format_unsigned(abs_value);
+    if (negative) *--begin = '-';
+    return begin;
+  }
+
+ public:
+  explicit format_int(int value) : str_(format_signed(value)) {}
+  explicit format_int(long value) : str_(format_signed(value)) {}
+  explicit format_int(long long value) : str_(format_signed(value)) {}
+  explicit format_int(unsigned value) : str_(format_unsigned(value)) {}
+  explicit format_int(unsigned long value) : str_(format_unsigned(value)) {}
+  explicit format_int(unsigned long long value)
+      : str_(format_unsigned(value)) {}
+
+  /** Returns the number of characters written to the output buffer. */
+  auto size() const -> size_t {
+    return detail::to_unsigned(buffer_ - str_ + buffer_size - 1);
+  }
+
+  /**
+    Returns a pointer to the output buffer content. No terminating null
+    character is appended.
+   */
+  auto data() const -> const char* { return str_; }
+
+  /**
+    Returns a pointer to the output buffer content with terminating null
+    character appended.
+   */
+  auto c_str() const -> const char* {
+    buffer_[buffer_size - 1] = '\0';
+    return str_;
+  }
+
+  /**
+    \rst
+    Returns the content of the output buffer as an ``std::string``.
+    \endrst
+   */
+  auto str() const -> std::string { return std::string(str_, size()); }
+};
+
+template <typename T, typename Char>
+struct formatter<T, Char, enable_if_t<detail::has_format_as<T>::value>>
+    : formatter<detail::format_as_t<T>, Char> {
+  template <typename FormatContext>
+  auto format(const T& value, FormatContext& ctx) const -> decltype(ctx.out()) {
+    using base = formatter<detail::format_as_t<T>, Char>;
+    return base::format(format_as(value), ctx);
+  }
+};
+
+#define FMT_FORMAT_AS(Type, Base) \
+  template <typename Char>        \
+  struct formatter<Type, Char> : formatter<Base, Char> {}
+
+FMT_FORMAT_AS(signed char, int);
+FMT_FORMAT_AS(unsigned char, unsigned);
+FMT_FORMAT_AS(short, int);
+FMT_FORMAT_AS(unsigned short, unsigned);
+FMT_FORMAT_AS(long, detail::long_type);
+FMT_FORMAT_AS(unsigned long, detail::ulong_type);
+FMT_FORMAT_AS(Char*, const Char*);
+FMT_FORMAT_AS(std::basic_string<Char>, basic_string_view<Char>);
+FMT_FORMAT_AS(std::nullptr_t, const void*);
+FMT_FORMAT_AS(detail::std_string_view<Char>, basic_string_view<Char>);
+FMT_FORMAT_AS(void*, const void*);
+
+template <typename Char, size_t N>
+struct formatter<Char[N], Char> : formatter<basic_string_view<Char>, Char> {};
+
+/**
+  \rst
+  Converts ``p`` to ``const void*`` for pointer formatting.
+
+  **Example**::
+
+    auto s = fmt::format("{}", fmt::ptr(p));
+  \endrst
+ */
+template <typename T> auto ptr(T p) -> const void* {
+  static_assert(std::is_pointer<T>::value, "");
+  return detail::bit_cast<const void*>(p);
+}
+template <typename T, typename Deleter>
+auto ptr(const std::unique_ptr<T, Deleter>& p) -> const void* {
+  return p.get();
+}
+template <typename T> auto ptr(const std::shared_ptr<T>& p) -> const void* {
+  return p.get();
+}
+
+/**
+  \rst
+  Converts ``e`` to the underlying type.
+
+  **Example**::
+
+    enum class color { red, green, blue };
+    auto s = fmt::format("{}", fmt::underlying(color::red));
+  \endrst
+ */
+template <typename Enum>
+constexpr auto underlying(Enum e) noexcept -> underlying_t<Enum> {
+  return static_cast<underlying_t<Enum>>(e);
+}
+
+namespace enums {
+template <typename Enum, FMT_ENABLE_IF(std::is_enum<Enum>::value)>
+constexpr auto format_as(Enum e) noexcept -> underlying_t<Enum> {
+  return static_cast<underlying_t<Enum>>(e);
+}
+}  // namespace enums
+
+class bytes {
+ private:
+  string_view data_;
+  friend struct formatter<bytes>;
+
+ public:
+  explicit bytes(string_view data) : data_(data) {}
+};
+
+template <> struct formatter<bytes> {
+ private:
+  detail::dynamic_format_specs<> specs_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
+    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
+                              detail::type::string_type);
+  }
+
+  template <typename FormatContext>
+  auto format(bytes b, FormatContext& ctx) -> decltype(ctx.out()) {
+    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
+                                                       specs_.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs_.precision, specs_.precision_ref, ctx);
+    return detail::write_bytes(ctx.out(), b.data_, specs_);
+  }
+};
+
+// group_digits_view is not derived from view because it copies the argument.
+template <typename T> struct group_digits_view {
+  T value;
+};
+
+/**
+  \rst
+  Returns a view that formats an integer value using ',' as a locale-independent
+  thousands separator.
+
+  **Example**::
+
+    fmt::print("{}", fmt::group_digits(12345));
+    // Output: "12,345"
+  \endrst
+ */
+template <typename T> auto group_digits(T value) -> group_digits_view<T> {
+  return {value};
+}
+
+template <typename T> struct formatter<group_digits_view<T>> : formatter<T> {
+ private:
+  detail::dynamic_format_specs<> specs_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const char* {
+    return parse_format_specs(ctx.begin(), ctx.end(), specs_, ctx,
+                              detail::type::int_type);
+  }
+
+  template <typename FormatContext>
+  auto format(group_digits_view<T> t, FormatContext& ctx)
+      -> decltype(ctx.out()) {
+    detail::handle_dynamic_spec<detail::width_checker>(specs_.width,
+                                                       specs_.width_ref, ctx);
+    detail::handle_dynamic_spec<detail::precision_checker>(
+        specs_.precision, specs_.precision_ref, ctx);
+    return detail::write_int(
+        ctx.out(), static_cast<detail::uint64_or_128_t<T>>(t.value), 0, specs_,
+        detail::digit_grouping<char>("\3", ","));
+  }
+};
+
+template <typename T> struct nested_view {
+  const formatter<T>* fmt;
+  const T* value;
+};
+
+template <typename T> struct formatter<nested_view<T>> {
+  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
+    return ctx.begin();
+  }
+  auto format(nested_view<T> view, format_context& ctx) const
+      -> decltype(ctx.out()) {
+    return view.fmt->format(*view.value, ctx);
+  }
+};
+
+template <typename T> struct nested_formatter {
+ private:
+  int width_;
+  detail::fill_t<char> fill_;
+  align_t align_ : 4;
+  formatter<T> formatter_;
+
+ public:
+  constexpr nested_formatter() : width_(0), align_(align_t::none) {}
+
+  FMT_CONSTEXPR auto parse(format_parse_context& ctx) -> const char* {
+    auto specs = detail::dynamic_format_specs<char>();
+    auto it = parse_format_specs(ctx.begin(), ctx.end(), specs, ctx,
+                                 detail::type::none_type);
+    width_ = specs.width;
+    fill_ = specs.fill;
+    align_ = specs.align;
+    ctx.advance_to(it);
+    return formatter_.parse(ctx);
+  }
+
+  template <typename F>
+  auto write_padded(format_context& ctx, F write) const -> decltype(ctx.out()) {
+    if (width_ == 0) return write(ctx.out());
+    auto buf = memory_buffer();
+    write(std::back_inserter(buf));
+    auto specs = format_specs<>();
+    specs.width = width_;
+    specs.fill = fill_;
+    specs.align = align_;
+    return detail::write(ctx.out(), string_view(buf.data(), buf.size()), specs);
+  }
+
+  auto nested(const T& value) const -> nested_view<T> {
+    return nested_view<T>{&formatter_, &value};
+  }
+};
+
+// DEPRECATED! join_view will be moved to ranges.h.
+template <typename It, typename Sentinel, typename Char = char>
+struct join_view : detail::view {
+  It begin;
+  Sentinel end;
+  basic_string_view<Char> sep;
+
+  join_view(It b, Sentinel e, basic_string_view<Char> s)
+      : begin(b), end(e), sep(s) {}
+};
+
+template <typename It, typename Sentinel, typename Char>
+struct formatter<join_view<It, Sentinel, Char>, Char> {
+ private:
+  using value_type =
+#ifdef __cpp_lib_ranges
+      std::iter_value_t<It>;
+#else
+      typename std::iterator_traits<It>::value_type;
+#endif
+  formatter<remove_cvref_t<value_type>, Char> value_formatter_;
+
+ public:
+  template <typename ParseContext>
+  FMT_CONSTEXPR auto parse(ParseContext& ctx) -> const Char* {
+    return value_formatter_.parse(ctx);
+  }
+
+  template <typename FormatContext>
+  auto format(const join_view<It, Sentinel, Char>& value,
+              FormatContext& ctx) const -> decltype(ctx.out()) {
+    auto it = value.begin;
+    auto out = ctx.out();
+    if (it != value.end) {
+      out = value_formatter_.format(*it, ctx);
+      ++it;
+      while (it != value.end) {
+        out = detail::copy_str<Char>(value.sep.begin(), value.sep.end(), out);
+        ctx.advance_to(out);
+        out = value_formatter_.format(*it, ctx);
+        ++it;
+      }
+    }
+    return out;
+  }
+};
+
+/**
+  Returns a view that formats the iterator range `[begin, end)` with elements
+  separated by `sep`.
+ */
+template <typename It, typename Sentinel>
+auto join(It begin, Sentinel end, string_view sep) -> join_view<It, Sentinel> {
+  return {begin, end, sep};
+}
+
+/**
+  \rst
+  Returns a view that formats `range` with elements separated by `sep`.
+
+  **Example**::
+
+    std::vector<int> v = {1, 2, 3};
+    fmt::print("{}", fmt::join(v, ", "));
+    // Output: "1, 2, 3"
+
+  ``fmt::join`` applies passed format specifiers to the range elements::
+
+    fmt::print("{:02}", fmt::join(v, ", "));
+    // Output: "01, 02, 03"
+  \endrst
+ */
+template <typename Range>
+auto join(Range&& range, string_view sep)
+    -> join_view<detail::iterator_t<Range>, detail::sentinel_t<Range>> {
+  return join(std::begin(range), std::end(range), sep);
+}
+
+/**
+  \rst
+  Converts *value* to ``std::string`` using the default format for type *T*.
+
+  **Example**::
+
+    #include <fmt/format.h>
+
+    std::string answer = fmt::to_string(42);
+  \endrst
+ */
+template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
+                                    !detail::has_format_as<T>::value)>
+inline auto to_string(const T& value) -> std::string {
+  auto buffer = memory_buffer();
+  detail::write<char>(appender(buffer), value);
+  return {buffer.data(), buffer.size()};
+}
+
+template <typename T, FMT_ENABLE_IF(std::is_integral<T>::value)>
+FMT_NODISCARD inline auto to_string(T value) -> std::string {
+  // The buffer should be large enough to store the number including the sign
+  // or "false" for bool.
+  constexpr int max_size = detail::digits10<T>() + 2;
+  char buffer[max_size > 5 ? static_cast<unsigned>(max_size) : 5];
+  char* begin = buffer;
+  return std::string(begin, detail::write<char>(begin, value));
+}
+
+template <typename Char, size_t SIZE>
+FMT_NODISCARD auto to_string(const basic_memory_buffer<Char, SIZE>& buf)
+    -> std::basic_string<Char> {
+  auto size = buf.size();
+  detail::assume(size < std::basic_string<Char>().max_size());
+  return std::basic_string<Char>(buf.data(), size);
+}
+
+template <typename T, FMT_ENABLE_IF(!std::is_integral<T>::value &&
+                                    detail::has_format_as<T>::value)>
+inline auto to_string(const T& value) -> std::string {
+  return to_string(format_as(value));
+}
+
+FMT_END_EXPORT
+
+namespace detail {
+
+template <typename Char>
+void vformat_to(buffer<Char>& buf, basic_string_view<Char> fmt,
+                typename vformat_args<Char>::type args, locale_ref loc) {
+  auto out = buffer_appender<Char>(buf);
+  if (fmt.size() == 2 && equal2(fmt.data(), "{}")) {
+    auto arg = args.get(0);
+    if (!arg) throw_format_error("argument not found");
+    visit_format_arg(default_arg_formatter<Char>{out, args, loc}, arg);
+    return;
+  }
+
+  struct format_handler : error_handler {
+    basic_format_parse_context<Char> parse_context;
+    buffer_context<Char> context;
+
+    format_handler(buffer_appender<Char> p_out, basic_string_view<Char> str,
+                   basic_format_args<buffer_context<Char>> p_args,
+                   locale_ref p_loc)
+        : parse_context(str), context(p_out, p_args, p_loc) {}
+
+    void on_text(const Char* begin, const Char* end) {
+      auto text = basic_string_view<Char>(begin, to_unsigned(end - begin));
+      context.advance_to(write<Char>(context.out(), text));
+    }
+
+    FMT_CONSTEXPR auto on_arg_id() -> int {
+      return parse_context.next_arg_id();
+    }
+    FMT_CONSTEXPR auto on_arg_id(int id) -> int {
+      return parse_context.check_arg_id(id), id;
+    }
+    FMT_CONSTEXPR auto on_arg_id(basic_string_view<Char> id) -> int {
+      int arg_id = context.arg_id(id);
+      if (arg_id < 0) throw_format_error("argument not found");
+      return arg_id;
+    }
+
+    FMT_INLINE void on_replacement_field(int id, const Char*) {
+      auto arg = get_arg(context, id);
+      context.advance_to(visit_format_arg(
+          default_arg_formatter<Char>{context.out(), context.args(),
+                                      context.locale()},
+          arg));
+    }
+
+    auto on_format_specs(int id, const Char* begin, const Char* end)
+        -> const Char* {
+      auto arg = get_arg(context, id);
+      // Not using a visitor for custom types gives better codegen.
+      if (arg.format_custom(begin, parse_context, context))
+        return parse_context.begin();
+      auto specs = detail::dynamic_format_specs<Char>();
+      begin = parse_format_specs(begin, end, specs, parse_context, arg.type());
+      detail::handle_dynamic_spec<detail::width_checker>(
+          specs.width, specs.width_ref, context);
+      detail::handle_dynamic_spec<detail::precision_checker>(
+          specs.precision, specs.precision_ref, context);
+      if (begin == end || *begin != '}')
+        throw_format_error("missing '}' in format string");
+      auto f = arg_formatter<Char>{context.out(), specs, context.locale()};
+      context.advance_to(visit_format_arg(f, arg));
+      return begin;
+    }
+  };
+  detail::parse_format_string<false>(fmt, format_handler(out, fmt, args, loc));
+}
+
+FMT_BEGIN_EXPORT
+
+#ifndef FMT_HEADER_ONLY
+extern template FMT_API void vformat_to(buffer<char>&, string_view,
+                                        typename vformat_args<>::type,
+                                        locale_ref);
+extern template FMT_API auto thousands_sep_impl<char>(locale_ref)
+    -> thousands_sep_result<char>;
+extern template FMT_API auto thousands_sep_impl<wchar_t>(locale_ref)
+    -> thousands_sep_result<wchar_t>;
+extern template FMT_API auto decimal_point_impl(locale_ref) -> char;
+extern template FMT_API auto decimal_point_impl(locale_ref) -> wchar_t;
+#endif  // FMT_HEADER_ONLY
+
+}  // namespace detail
+
+#if FMT_USE_USER_DEFINED_LITERALS
+inline namespace literals {
+/**
+  \rst
+  User-defined literal equivalent of :func:`fmt::arg`.
+
+  **Example**::
+
+    using namespace fmt::literals;
+    fmt::print("Elapsed time: {s:.2f} seconds", "s"_a=1.23);
+  \endrst
+ */
+#  if FMT_USE_NONTYPE_TEMPLATE_ARGS
+template <detail_exported::fixed_string Str> constexpr auto operator""_a() {
+  using char_t = remove_cvref_t<decltype(Str.data[0])>;
+  return detail::udl_arg<char_t, sizeof(Str.data) / sizeof(char_t), Str>();
+}
+#  else
+constexpr auto operator""_a(const char* s, size_t) -> detail::udl_arg<char> {
+  return {s};
+}
+#  endif
+}  // namespace literals
+#endif  // FMT_USE_USER_DEFINED_LITERALS
+
+template <typename Locale, FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
+inline auto vformat(const Locale& loc, string_view fmt, format_args args)
+    -> std::string {
+  return detail::vformat(loc, fmt, args);
+}
+
+template <typename Locale, typename... T,
+          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
+inline auto format(const Locale& loc, format_string<T...> fmt, T&&... args)
+    -> std::string {
+  return fmt::vformat(loc, string_view(fmt), fmt::make_format_args(args...));
+}
+
+template <typename OutputIt, typename Locale,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
+                            detail::is_locale<Locale>::value)>
+auto vformat_to(OutputIt out, const Locale& loc, string_view fmt,
+                format_args args) -> OutputIt {
+  using detail::get_buffer;
+  auto&& buf = get_buffer<char>(out);
+  detail::vformat_to(buf, fmt, args, detail::locale_ref(loc));
+  return detail::get_iterator(buf, out);
+}
+
+template <typename OutputIt, typename Locale, typename... T,
+          FMT_ENABLE_IF(detail::is_output_iterator<OutputIt, char>::value&&
+                            detail::is_locale<Locale>::value)>
+FMT_INLINE auto format_to(OutputIt out, const Locale& loc,
+                          format_string<T...> fmt, T&&... args) -> OutputIt {
+  return vformat_to(out, loc, fmt, fmt::make_format_args(args...));
+}
+
+template <typename Locale, typename... T,
+          FMT_ENABLE_IF(detail::is_locale<Locale>::value)>
+FMT_NODISCARD FMT_INLINE auto formatted_size(const Locale& loc,
+                                             format_string<T...> fmt,
+                                             T&&... args) -> size_t {
+  auto buf = detail::counting_buffer<>();
+  detail::vformat_to<char>(buf, fmt, fmt::make_format_args(args...),
+                           detail::locale_ref(loc));
+  return buf.count();
+}
+
+FMT_END_EXPORT
+
+template <typename T, typename Char>
+template <typename FormatContext>
+FMT_CONSTEXPR FMT_INLINE auto
+formatter<T, Char,
+          enable_if_t<detail::type_constant<T, Char>::value !=
+                      detail::type::custom_type>>::format(const T& val,
+                                                          FormatContext& ctx)
+    const -> decltype(ctx.out()) {
+  if (specs_.width_ref.kind == detail::arg_id_kind::none &&
+      specs_.precision_ref.kind == detail::arg_id_kind::none) {
+    return detail::write<Char>(ctx.out(), val, specs_, ctx.locale());
+  }
+  auto specs = specs_;
+  detail::handle_dynamic_spec<detail::width_checker>(specs.width,
+                                                     specs.width_ref, ctx);
+  detail::handle_dynamic_spec<detail::precision_checker>(
+      specs.precision, specs.precision_ref, ctx);
+  return detail::write<Char>(ctx.out(), val, specs, ctx.locale());
+}
+
+FMT_END_NAMESPACE
+
+#ifdef FMT_HEADER_ONLY
+#  define FMT_FUNC inline
+#  include "format-inl.h"
+#else
+#  define FMT_FUNC
+#endif
+
+#endif  // FMT_FORMAT_H_
index ef56d265dcf95eaae7962feafbc0ef8dd03a48e5..0c612a55b89583079879581fa3047a60a42150e2 100644 (file)
@@ -3,6 +3,8 @@
 #include <iomanip>
 #include <stdexcept>
 
+#include "fmt/format.h"
+
 namespace factor {
 
 void factor_vm::primitive_bignum_to_fixnum() {
@@ -227,23 +229,33 @@ void factor_vm::primitive_format_float() {
     ctx->replace(tag<byte_array>(array));
     return;
   }
-  switch (format[0]) {
-    case 'f': localized_stream << std::fixed; break;
-    case 'e': localized_stream << std::scientific; break;
-  }
-  if (isupper(format[0])) {
-    localized_stream << std::uppercase;
-  }
-  if (fill[0] != '\0') {
-    localized_stream << std::setfill(fill[0]);
-  }
-  if (width >= 0) {
-    localized_stream << std::setw(static_cast<int>(width));
-  }
-  if (precision >= 0) {
-    localized_stream << std::setprecision(static_cast<int>(precision));
+
+  if (format[0]) {
+
+    switch (format[0]) {
+      case 'f': localized_stream << std::fixed; break;
+      case 'e': localized_stream << std::scientific; break;
+    }
+    if (isupper(format[0])) {
+      localized_stream << std::uppercase;
+    }
+    if (fill[0] != '\0') {
+      localized_stream << std::setfill(fill[0]);
+    }
+    if (width >= 0) {
+      localized_stream << std::setw(static_cast<int>(width));
+    }
+    if (precision >= 0) {
+      localized_stream << std::setprecision(static_cast<int>(precision));
+    }
+
+    localized_stream << value;
+
+  } else {
+
+    localized_stream << fmt::format("{}", value);
   }
-  localized_stream << value;
+
   const std::string& tmp = localized_stream.str();
   const char* cstr = tmp.c_str();
   size_t size = tmp.length();